Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
Chứng minh cái này thì đơn giản thôi!
Mình xin trình bày cách chứng minh mà mình tâm đắc nhất:
Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau)
=>(m/n)^2=2
=>m^2=2n^2
=>m^2 chia hết cho 2
=>m chia hết cho 2
Đặt m=2k (k thuộc Z)
=>(2k)^2=2n^2
=>2k^2=n^2
=> n^2 chia hết cho 2
=> n chia hết cho 2.
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.
mk nghĩ thế này
a,b) Ta thấy: không có số nào mũ 2 lên được 15 và 2
=>\(\sqrt{15},\sqrt{2}\) là số vô tỉ
c) ta có: \(\sqrt{2}\) là số vô tỉ
mà Số tự nhiên - số vô tỉ luôn luôn là số vô tỉ
=>đpcm
nha bạn
a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ
---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0
\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn
Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)
\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn
Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm
b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ
---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0
\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)
Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)
\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)
\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)
\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm
(Bài dài quá, giải mệt vler !!)
Giả sử \(\sqrt{11}\)là số hữu tỉ thì đc viết dưới dạng
\(\sqrt{11}=\frac{m}{n}\)với \(m,n\in N\), (m,n)\(=1\)
Do 11 không là SCP nên \(\frac{m}{n}\notin N\)\(\Rightarrow n>1\)
Ta có \(m^2=11\cdot n^2\)
Gọi p là ước nguyên tố nào đó của n, suy ra \(m^2⋮p\), hay \(m⋮p\)
Như vậy, p là ước nguyên tố của mvà n trái với giả thiết
Vậy \(\sqrt{11}\)là số vô tỉ
Chứng minh phản chứng :
Giả sử √2 là số hữu tỉ
=> √2 = a/b với a, b nguyên và a/b tối giản hay (a ; b) = 1 (1)
√2 = a/b
<=> 2 = a²/b²
<=> b² = a²/2
=> a² chia hết cho 2
=> a chia hết cho 2 (vì 2 là số nguyên tố) (2)
=> a = 2k. Thay vào :
2 = a²/b²
<=> 2 = (2k)²/b²
<=> b² = 2k²
=> b² chia hết cho 2
=> b chia hết cho 2 (3)
Từ (2) và (3) => ƯC (a ; b) = 2
=> Mâu thuẫn (1)
=> Điều giả sử là sai
=> √2 là số vô tỉ (đpcm)
Giả sử \(\sqrt{3}+1\) là số hữu tỉ
Vì 1 là số hữu tỉ nên \(\sqrt{3}\) là số hữu tỉ
\(\Rightarrow\sqrt{3}=\frac{m}{n}\left(m;n\in Z;n\ne0\right)\) (|m|; |n|)=1
\(\Rightarrow\frac{m^2}{n^2}=3\)
=> 3.n2 = m2
Giả sử p là ước nguyên tố của n => m2 chia hết cho p
Mà p nguyên tố nên m chia hết cho p
Lúc này, ƯCLN(|m|; |n|) = p, khác 1, trái với giả sử
=> \(\sqrt{3}+1\) là số vô tỉ (đpcm)