K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2015

 (7.n)1992 =71992.n1992=72.71990.n1992=49.71990.n1992 chia hết cho 49

27 tháng 1 2018

b) n + 3 \(⋮\) n - 1 <=> (n - 1) + 4 \(⋮\) n - 1

=> 4 \(⋮\) n - 1 (vì n - 1 \(⋮\) n - 1)

=> n - 1 ∈ Ư(4) = {±1; ±2; ±4}

Lập bảng giá trị:

n - 11-12-24-4
n203-15-3

Vậy n ∈ {2; 0; 3; -1; 5; -3}

27 tháng 1 2018

phần a,c mk ko biết làm nhé ~

b) n + 3  n - 1 <=> (n - 1) + 4  n - 1

=> 4  n - 1 (vì n - 1  n - 1)

=> n - 1 ∈ Ư(4) = {±1; ±2; ±4}

Lập bảng giá trị:

n - 11-12-24-4
n203-15-3

Vậy n ∈ {2; 0; 3; -1; 5; -3}

chúc các bn hok tốt !

29 tháng 8 2017

a.b=1991^1992 = 1991^m * 1991^n (m+n = 1992) 
(Nếu coi a = 1991^m; b = 1991^n) 

Ko mất tính tổng quát, giả sử m>n 
a+b = 1991^n (1991^ (m-n) + 1) (Với m-n chẵn Do m,n là số tự nhiên; m+n = 1992) 

1991^n ko chia hết cho 1992 
Bằng quy nạp tóan học sẽ dễ dàng chứng minh được 1991^ (m-n) + 1 cũng ko chia hết cho 1992 

Từ điều đấy suy ra điều phải chứng minh.

11 tháng 11 2016

  a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
ta có: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. ( vì trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7 nên k các số đó chia hết cho 7)

11 tháng 11 2016

Tớ không biết có đúng không nữa :

  a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
ta có: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. ( vì trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7 nên k các số đó chia hết cho 7)
 

11 tháng 5 2021

a, 

$5^5-5^4+5^3$

$=5^3(5^2-5+1)$

$=5^3 . 21$

Mà $21 \vdots 7$

$\to 5^3 . 21 \vdots 7$

Nên $5^5-5^4+5^3 \vdots 7$ ( đpcm)

11 tháng 5 2021

a) 55 - 54 + 53 = 53 ( 52 - 5 + 1)

                       = 53 . 21

Mà 21 chia hết cho 7 nên 53 . 21 chia hết cho 7

b) 76 + 75 - 74 = 74( 72 + 7 -1)

                       = 74 . 55

Mà 55 chia hết cho 11 nên 74 . 55 chia hết cho 11

Ý c tương tự như trên nhé!!

d) 106 - 5= (2.5)- 57

                 = 26 . 56 - 57

                 = 5( 26 - 5)

                 = 56 . 59 chia hết cho 59

e) 3n+2 - 2n+2 + 3n - 2Bạn viết sai nên mik sửa như này nha)

= 3n . 32 - 2n . 22 + 3n - 2

= ( 3n . 32 + 3n) - (2. 22 + 2)

= 3n( 32 + 1) - 2n ( 22 + 1)

= 3n . 10 - 2. 5

Ta thấy 10 chia hết cho 10 nên 3n . 10 chia hết cho 10     (1)

          2 . 5 chia hết cho 10 nên 2n . 5 chia hết cho 10      (2)

Từ (1) và (2) => 3n . 10 - 2n .5 chia hết cho  10 với mọi n thuộc N*

vậy.......

f) 817 - 279 - 913

= (34)7 - ( 33)9 - (32)13

= 328 - 327 - 326

(đến đây làm tương tự ý a với ý b nhé)

Mik thấy lần sau nếu ý nào k làm đc bạn mới hỏi nhé hoặc k biết làm hết thì hỏi từng ý 1 thôi chứ bn hỏi nhiều như này người ta ngại trả lời lắm, mik cũng ngại nữa. 

Nãy giờ mik viết mỏi tay mỏi mắt lắm rồi bn nhớ k cho mik nhé!!!

11 tháng 3 2018

BN sử dụng đồng dư nha