Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)A=2^1+2^2+2^3+2^4+...+2^2010
=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)
=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)
=>A=6+2^2.6+2^4.6+...+2^2008.6
=>A=6.(1+2^2+2^4+...+2^2008)
=>A=3.2.(1+2^2+2^4+...+2^2008)
=>A chia hết cho 3
A=2+2^2+2^3+2^4+...+2^2010
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)
A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^2008.7
A=7.(2+2^4+2^7+...+2^2008)
=> A chia hết cho 7
các phần khác làm tương tự
A = 21 + 22 + 23 + 24 + .... + 22009 + 22010
=> A = ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 22009 + 22010 )
=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )
=> A = 21.3 + 23.3 + .... + 22009.3
=> A = 3.( 21 + 23 + .... + 22009 )
Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )
A = 21 + 22 + 23 + 24 + 25 + 26 + .... + 22007 + 22008 + 22009
=> A = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22007 + 22008 + 22009 )
=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )
=> A = 21.7 + 24.7 + .... + 22007.7
=> A = 7.( 21 + 24 + .... + 22007 )
Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )
Các ý sau tương tự .
A=(2^1+2^2+2^3+2^4+2^5+2^6)+................+(2^2005+2^2006+2^2007+2^2008+2^2009+2^2010)
A=2^1(1+2+2^2+2^3+2^4+2^5)+...................+2^2005(1+2+2^2+2^3+2^4+2^5)
A=2.63+......................+2^2005.63
A=63.(2+..............................+2^2005)
VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.
TICK CHO MÌNH NHA
B= 3^1+3^2+...+3^2010
B=(3^1+3^2)+(3^3+3^4)+...+(3^2009+3^2010)
B=3^1.(1+3)+3^3.(1+3)+....+3^2009.(1+3)
B=3^1.4+3^3.4+...+3^2009.4
B=4.(3^1+3^3+...+3^2009)\(⋮\)4
=> B\(⋮\)4
=> ĐPCM
B=3^1+3^2+3^3+...+3^2010
B=(3^1+3^2+3^3)+(3^4+3^5+3^6)+...+(3^2008+3^2009+3^2010)
B=3^1.(1+3+3^2)+3^4.(1+3+3^2)+...+3^2008.(1+3+3^2)
B=3^1.13+3^4.13+..+3^2008.13
B=13.(3^1+3^4+...+3^2008)\(⋮\)13
=>B\(⋮\)13
=> ĐPCM
Đặt \(A=3+3^2+...+3^{2010}\)
Vì A có 2010 số hạng nên ta chia A thành 670 nhóm,mỗi nhóm 3 số hạng
Ta có: \(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{2008}.\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{2008}.13\)
\(=13.\left(3+3^4+...+3^{2008}\right)\)chia hết cho 13
\(\Rightarrow A\)chia hết cho 13
Vậy, A chia hết cho 13
tích mik nhé. Cảm ơn
31+ 32+ 33+ 34 +...+32009+32010
= ( 31 +32 +33) +( 34 + 35 + 36)+...+ (32008+32009+32010)
= 3 (1+ 3+ 32) +34 (1+3+32) +...+ 32008( 1+ 3+ 32)
= 3.13 + 34 .13+...+ 32008 .13
= (3+ 34+...+ 32008) .13
Vì 13 chia hết cho 13
=> (3+ 34+...+ 32008) .13 cũng chia hết cho 13 ( đpcm)