K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

Đật= \(19^n-1-18n^7\)

ta có: \(19^n-1=18.\left(19^{n-1}+...+1\right)\)

=> A=\(19^n-1-18n=18\left(19^{n-1}+..+1\right)-18n\)

=\(18\left(19^{n-1}+..+1-n\right)\)

...

10 tháng 1 2016

a)10^n+18n-1=10^n-1+18n=999....99(n chu so 9)+18n

  =9.(111...11(n chu so 9)+2n)

  Xet 111...11(n chu so 9)+2n=111..11-n+3n

  De thay tong cac chu so cua 111....11(n chu so 1) la n

 =>111...11-n chia het cho 3

 =>111...11-n+3n chia het cho 3

 =>10^n+18n-1 chia het cho 27

15 tháng 10 2016

Ta có:

\(2222\equiv-4\left(mod7\right)\Rightarrow2222^{5555}\equiv\left(-4\right)^{5555}\left(mod7\right)\left(1\right)\)

\(5555\equiv4\left(mod7\right)\Rightarrow5555^{2222}\equiv4^{2222}\left(mod7\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow2222^{5555}+5555^{2222}\equiv\left(-4\right)^{5555}+4^{2222}\left(mod7\right)\)

Mà (-4)5555 + 42222 = -42222.(43333 - 1) = -42222.[(43)1111 - 1] = -42222.(641111 - 1)

Lại có: \(64\equiv1\left(mod7\right)\Rightarrow64^{1111}\equiv1\left(mod7\right)\)

\(\Rightarrow64^{1111}-1\equiv1-1\left(mod7\right)\) hay \(64^{1111}-1⋮7\)

\(\Rightarrow-4^{2222}.\left(64^{1111}-1\right)⋮7\)

hay \(2222^{5555}+5555^{2222}⋮7\left(đpcm\right)\)