K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

vì 2-1=1

1 tháng 5 2016

1+1=2 vì 2-1=1

10 tháng 4 2017

\(S=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(S=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(S=1-\frac{1}{100!}< 1\)

Vậy S<1

10 tháng 4 2017

thánh đây rồi , đơn giản vậy em nghĩ mãi k ra , cảm ơn anh nhiều

23 tháng 4 2018

Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}+\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

Nhân \(\frac{1}{7^2}\)vào A. Ta được:

\(A.\frac{1}{7^2}=\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-...-\frac{1}{7^{98}}+\frac{1}{7^{100}}+\frac{1}{7^{102}}\)

\(A=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

Ta có: \(\frac{1}{7^2}.A+A=\frac{1}{49}-\frac{1}{7^{102}}\Rightarrow\frac{50}{49}.A=\frac{1}{49}-\frac{1}{7^{102}}\)

\(\Rightarrow A=\left(\frac{1}{49}-\frac{1}{7^{102}}\right)\frac{49}{50}< \frac{1}{5}^{\left(đpcm\right)}\)

23 tháng 4 2018

dễ k đi rồi giải

18 tháng 9 2015

1/ 
1/2! +2/3! +3/4! +... + 99/100! 
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!) 
=1 - 1/100! <1 

\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\)

\(A=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}\right)\)

\(>1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+4\times\frac{1}{8}+4\times\frac{1}{12}+4\times\frac{1}{16}\)

\(=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

\(=1+2\times\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\)

\(>1+2\times\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=1+2\times1\)

\(=1+2=3=B\)

\(\Rightarrow A>B\)

Học tốt

28 tháng 5 2019

\(A< B\)

4 tháng 11 2015

Ta có:

2225 = (29)25 = 51225

3150 = (36)25 = 72925

Vì 51225 < 72925 => 2225 < 3150

27 tháng 10 2016

\(M=5^{2016}-5^{2015}-5^{2014}-...-5-1\)

=>\(5M=5\left(5^{2016}-5^{2015}-5^{2014}-...-5-1\right)\)

=>\(5M=5^{2017}-5^{2016}-5^{2015}-...-5^2-5\)

=>\(5M-M=\left(5^{2017}-5^{2016}-5^{2015}-...-5^2-5\right)-\left(5^{2016}-5^{2015}-5^{2014}-...-5-1\right)\)

=>\(4M=5^{2017}-2.5^{2016}+1\)

=>\(M=\frac{5^{2017}-2.5^{2016}+1}{4}\)

27 tháng 10 2016

thanks nha