K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2015

\(x^4-16x^2+32=0\Leftrightarrow x^2=8+4\sqrt{2}\text{ hoặc }x^2=8-4\sqrt{2}\)

\(a=\sqrt{2+\sqrt{\frac{4+2\sqrt{3}}{2}}}-\sqrt{6-3\sqrt{\frac{4+2\sqrt{3}}{2}}}\)\(=\sqrt{2+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}}-\sqrt{6-3\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}}\)

\(=\sqrt{2+\frac{\sqrt{3}+1}{\sqrt{2}}}-\sqrt{6-3\frac{\sqrt{3}+1}{\sqrt{2}}}=\sqrt{\frac{4+\sqrt{6}+\sqrt{2}}{2}}-\sqrt{3}\sqrt{\frac{4-\sqrt{6}-\sqrt{2}}{2}}\)

\(a^2=\frac{4+\sqrt{6}+\sqrt{2}}{2}+3.\frac{4-\sqrt{6}-\sqrt{2}}{2}-2\sqrt{3}\sqrt{\frac{\left(4+\sqrt{6}+\sqrt{2}\right)\left(4-\sqrt{6}-\sqrt{2}\right)}{2.2}}\)

\(=8-\left(\sqrt{6}+\sqrt{2}\right)-2\sqrt{3}.\frac{1}{2}.\sqrt{4^2-\left(\sqrt{6}+\sqrt{2}\right)^2}\)

\(=8-\sqrt{6}-\sqrt{2}-\sqrt{3}\sqrt{8-4\sqrt{3}}\)

\(=8-\sqrt{2}-\sqrt{6}-\sqrt{\left(3\sqrt{2}-\sqrt{6}\right)^2}\)

\(=8-\sqrt{2}-\sqrt{6}-\left(3\sqrt{2}-\sqrt{6}\right)\)

\(=8-4\sqrt{2}\)

\(\Rightarrow a\text{ là nghiệm phương trình }x^4-16x^2+32=0\)

26 tháng 7 2015

\(x^2=2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}-2.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{6-3\sqrt{2+\sqrt{3}}}\)

\(x^2=8-2\sqrt{2+\sqrt{3}}-2.\sqrt{3.\left(2+\sqrt{2+\sqrt{3}}\right).\left(2-\sqrt{2+\sqrt{3}}\right)}\)

\(x^2=8-2\sqrt{2+\sqrt{3}}-2.\sqrt{3.\left(4-\left(2+\sqrt{3}\right)\right)}=8-2\sqrt{2+\sqrt{3}}-2.\sqrt{3.\left(2-\sqrt{3}\right)}\)

\(x^2=8-\sqrt{2}\sqrt{4+2.\sqrt{3}}-\sqrt{6}.\sqrt{4-2.\sqrt{3}}=8-\sqrt{2}.\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{6}.\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(x^2=8-\sqrt{2}.\left(1+\sqrt{3}\right)-\sqrt{6}.\left(\sqrt{3}-1\right)=8-\sqrt{2}-\sqrt{6}-3\sqrt{2}+\sqrt{6}=8-4\sqrt{2}\)

=> \(x^4=\left(x^2\right)^2=\left(8-4\sqrt{2}\right)^2=\left(4\sqrt{2}\right)^2.\left(\sqrt{2}-1\right)^2=32.\left(2-2\sqrt{2}+1\right)=96-64\sqrt{2}\)

=> \(x^4-16x^2+32=96-64\sqrt{2}-16.\left(8-4\sqrt{2}\right)+32=\left(96-96\right)-64\sqrt{2}+64\sqrt{2}=0\)

=> đpcm

 

 

12 tháng 10 2019

<=> (x-4)(x-3) = \(\sqrt{3}\)(y+1) 

Nếu y là số nguyên khác -1 thì y+1 là số nguyên; \(\sqrt{3}\)là số vô tỉ nên \(\sqrt{3}\left(y+1\right)\)là số vô tỉ

mà x-4 và x-3 đều là số nguyên nên (x-3)(x-4) là số nguyên => vô lý

vậy y = -1 => (x-4)(x-3)=0 <=> x=4 hoặc x= 3

vậy có 2 nghiêm thỏa mãn (x;y) = (4;-1); (x;y) = (3;-1)

17 tháng 8 2018

Đặt \(\sqrt{2+\sqrt{3}}=a\left(a>0\right)\)

Ta có x=\(\sqrt{2+a}-\sqrt{3\left(2-a\right)}\Rightarrow x^2=2+a+3\left(2-a\right)-2\sqrt{3\left(2+a\right)\left(2-a\right)}\)\(=8-2a-2\sqrt{3\left(4-a^2\right)}=8-2a-2\sqrt{3\left(4-2-\sqrt{3}\right)}=8-2a-\sqrt{6}\sqrt{4-2\sqrt{3}}\)

\(=8-2\sqrt{2+\sqrt{3}}-\sqrt{6}\left(\sqrt{3}-1\right)=8-\sqrt{2}\sqrt{4+2\sqrt{3}}-3\sqrt{2}+\sqrt{6}\)

\(=8-\sqrt{2}\left(\sqrt{3}+1\right)-3\sqrt{2}+\sqrt{6}=8-\sqrt{6}-\sqrt{2}-3\sqrt{2}+\sqrt{6}=8-4\sqrt{2}\)

\(\Rightarrow x^2-8=-4\sqrt{2}\Rightarrow\left(x^2-8\right)^2=32\Rightarrow x^4-16x^2+64=32\Rightarrow x^4-16x^2+32=0\left(ĐPCM\right)\)

30 tháng 3 2018

Tưởng bn lớp 5 ạ?? Sao lại đăng câu hỏi lp 9 ạ??:)

30 tháng 3 2018

minh lop 5 dang chi minh muon nick cua minh

14 tháng 8 2020

<=>   \(x^2=2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}-2\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(6-3\sqrt{2+\sqrt{3}}\right)}\)

<=>   \(x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{12-6\sqrt{2+\sqrt{3}}+6\sqrt{2+\sqrt{3}}-3\left(2+\sqrt{3}\right)}\)

<=>   \(x^2=8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-2\sqrt{12-6-3\sqrt{3}}\)

<=>   \(x^2=8-\sqrt{2}.\sqrt{\left(\sqrt{3}+1\right)^2}-2\sqrt{6-3\sqrt{3}}\)

<=>   \(x^2=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{2}.\sqrt{12-6\sqrt{3}}\)

<=>   \(x^2=8-\sqrt{6}-\sqrt{2}-\sqrt{2}.\sqrt{\left(3-\sqrt{3}\right)^2}\)

<=>   \(x^2=8-\sqrt{6}-\sqrt{2}-\sqrt{2}\left(3-\sqrt{3}\right)\)

<=>   \(x^2=8-\sqrt{6}-\sqrt{2}-3\sqrt{2}+\sqrt{6}\)

<=>   \(x^2=8-4\sqrt{2}\)

<=>   \(8-x^2=4\sqrt{2}\)

<=>   \(\left(8-x^2\right)^2=\left(4\sqrt{2}\right)^2\)

<=>   \(x^4-16x^2+64=32\)

<=>   \(x^4-16x^2=-32\)

VẬY    \(x^4-16x^2=-32\)

*** ĐÂY LÀ 1 BÀI TOÁN RẤT CỔ RỒI !!!!!!

lớp 6 đã có phương trình đâu

1 tháng 11 2017

ĐKXĐ : \(4\le x\le6\)

Xét \(VP^2=6-x+x-4+2\sqrt{\left(6-x\right)\left(x-4\right)}=2+2\sqrt{\left(6-x\right)\left(x-4\right)}\)

Áp dụng bđt Cauchy ta có : \(2+2\sqrt{\left(6-x\right)\left(x-4\right)}\le2+6-x+x-4=4\)

\(\Rightarrow VP\le2\forall x\)(1)

Xét \(VT=x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\forall x\)(2)

Từ (1);(2) \(\Rightarrow VT\ge2\ge VP\)

Dấu "=" xảy ra \(\hept{\begin{cases}6-x=x-4\\\left(x-5\right)^2=0\end{cases}\Rightarrow x=5\left(TMĐKXĐ\right)}\)

Vậy nghiệm pt là x = 5

NV
12 tháng 10 2020

\(S=\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)

\(S=\frac{a^2}{a^2+2ab}+\frac{b^2}{b^2+2bc}+\frac{c^2}{c^2+2ca}\)

\(S\ge\frac{\left(a+b+c\right)^2}{a^2+2ab+b^2+2bc+c^2+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

\(S_{min}=1\) khi \(a=b=c=1\)

GTNN của S hoàn toàn không cần đến điều kiện \(abc=1\), nó luôn bằng 1 với mọi số thực dương a;b;c (nên điều kiện \(abc=1\) là thừa)

NV
12 tháng 10 2020

Do \(x^{2016}+y^{2016}+z^{2016}=1\Rightarrow\left\{{}\begin{matrix}0\le x^{2016}\le1\\0\le y^{2016}\le1\\0\le z^{2016}\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^{2017}\le x^{2016}\\y^{2017}\le y^{2016}\\z^{2017}\le z^{2016}\end{matrix}\right.\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le x^{2016}+y^{2016}+z^{2016}\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le1\)

Đẳng thức xảy ra khi vả chỉ khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị

\(\Rightarrow P=1\)

Gọi \(d=ƯC\left(m^2+n^2;m+n\right)\)

\(\Rightarrow\left(m+n\right)^2-\left(m^2+n^2\right)⋮d\Rightarrow2mn⋮d\)

TH1: \(2⋮d\Rightarrow d_{max}=2\) khi \(m;n\) cùng lẻ

TH2: \(m⋮d\) , mà \(m+n⋮d\Rightarrow n⋮d\)

\(\Rightarrow d=ƯC\left(m;n\right)\Rightarrow d=1\)

Th3: \(n⋮d\) tương tự như trên ta có \(d=1\)

Vậy ước chung lớn nhất A; B bằng 2 khi m; n cùng lẻ