K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

Gọi ƯCLN(2018+1 ;2019+1)=d( d khác 0 )

suy ra 2018+1 chia hết cho d và 2019+1 chia hết cho d

suy ra (2018+1)-(2019+1 chia hêh cho d

suy ra (2018+1-2019-1) chia hết cho d

 Suy ra (-1) chia  hh cho d

Suy ra ƯCLN (2018+1;2019+1)=-1

Suy ra :2818+1/2019+1 là phân số tối giản 

Vậy      ................................................................

28 tháng 4 2019

Bạn bên dưới ơi, "!" là giai thừa nha

18 tháng 5 2016

gọi UCLN(n^3+2n;n^4+3n^2+1)=d

=> n^3+2n chia hết cho d

và  n^4 +3n^2+1 chia hết cho d (1)  

=> n^4+2n^2 chia hết cho d(2)

từ (1)(2)=> n^2+1 chia hết cho d

           =>  (n^2+1)^2 chia hết cho d <=> n^4 +2n^2+1 chia hết cho d (3)

từ (2)(3)=> 1 chia hết cho d

=> d=1 hoặc -1

=> đpcm

      

18 tháng 5 2016

Mk chịu

Lớp 8 thì mk bó tay

11 tháng 1 2018

Bạn xem lời giải ở đường link sau nhé:

Câu hỏi của hyun mau - Toán lớp 8 - Học toán với OnlineMath

11 tháng 1 2018

thank

NV
13 tháng 4 2019

a/

Nhận thấy ngay phương trình có 2 nghiệm \(\left[{}\begin{matrix}x=2019\\x=2018\end{matrix}\right.\)

- Với \(x>2019\Rightarrow\left\{{}\begin{matrix}x-2018>1\\x-2019>0\end{matrix}\right.\) \(\Rightarrow\left|x-2018\right|^{2019}+\left|x-2019\right|^{2018}>1\Rightarrow\) pt vô nghiệm

- Với \(x< 2018\Rightarrow\left\{{}\begin{matrix}x-2018< 0\\x-2019< -1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-2018\right|>0\\\left|x-2019\right|>1\end{matrix}\right.\)

\(\Rightarrow\left|x-2018\right|^{2019}+\left|x-2019\right|^{2018}>1\Rightarrow\) pt vô nghiệm

- Với \(2018< x< 2019\) viết lại pt:

\(\left|x-2018\right|^{2019}+\left|2019-x\right|^{2018}=1\)

Ta có: \(\left\{{}\begin{matrix}0< x-2018< 1\\0< 2019-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-2018\right|^{2019}< x-2018\\\left|2019-x\right|^{2018}< 2019-x\end{matrix}\right.\)

\(\Rightarrow\left|x-2018\right|^{2019}+\left|2019-x\right|^{2018}< x-2018+2019-x=1\)

\(\Rightarrow\) pt vô nghiệm

Vậy pt có đúng 2 nghiệm: \(\left[{}\begin{matrix}x=2018\\x=2019\end{matrix}\right.\)

NV
13 tháng 4 2019

b/

Thay \(x=0\) vào pt thấy không phải là nghiệm, chia cả tử và mẫu của các hạng tử vế trái cho x:

\(\frac{2}{x+\frac{1}{x}-1}-\frac{1}{x+\frac{1}{x}+1}=\frac{5}{3}\)

Đặt \(x+\frac{1}{x}=a\) phương trình trở thành:

\(\frac{2}{a-1}-\frac{1}{a+1}=\frac{5}{3}\)

\(\Leftrightarrow2\left(a+1\right)-\left(a-1\right)=\frac{5}{3}\left(a^2-1\right)\)

\(\Leftrightarrow5a^2-3a-14=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{7}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{7}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-2x+1=0\\5x^2+7x+5=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=1\)

4 tháng 6 2019

\(B=\sqrt{\frac{2019^2}{2019^2}+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)

\(B=\sqrt{\frac{\left(2018+1\right)^2}{2019^2}+\frac{2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)

\(B=\sqrt{\frac{1}{2019^2}+\frac{2018^2+2.2018+2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)

\(B=\sqrt{\frac{1}{2019^2}+2.2018.\frac{1}{2019}+2018^2}+\frac{2018}{2019}\)

\(B=\sqrt{\left(\frac{1}{2019}+2018\right)^2}+\frac{2018}{2019}\)

\(B=\frac{1}{2019}+2018+\frac{2018}{2019}=2019\) là một số tự nhiên

4 tháng 6 2019

\(B=\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)

\(B=\sqrt{1^2+2018^2+\left(-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)

\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2.\frac{2018}{2019}+2.\frac{2018^2}{2019}-2.2018}\)\(+\frac{2018}{2019}\)

\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2\left(\frac{2018+2018.2018-2018.2019}{2019}\right)}\)\(+\frac{2018}{2019}\)

\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)

\(B=1+2018-\frac{2018}{2019}+\frac{2018}{2019}=2019\)

Vậy B có giá trị là 1 số tự nhiên.

9 tháng 4 2020

\(\frac{x+1}{2018}+\frac{x+1}{2019}=\frac{x+1}{2020}+\frac{x+1}{2021}\Leftrightarrow\frac{x+1}{2018}+\frac{x+1}{2019}-\frac{x+1}{2020}-\frac{x+1}{2021}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

KL: ................

7 tháng 7 2018

Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}=\left(1+\frac{1}{2018}\right)+\left(\frac{1}{2}+\frac{1}{2017}\right)+...+\left(\frac{1}{1009}+\frac{1}{1010}\right)\)

\(=\frac{2019}{1.2018}+\frac{2019}{2.2017}+...+\frac{2019}{1009.1010}\)

\(=2019\left(\frac{1}{1.2018}+\frac{1}{2.2017}+...+\frac{1}{1009.1010}\right)\)

Do đó \(A=1.2.3....2018.2019\left(\frac{1}{1.2018}+\frac{1}{2.2017}+...+\frac{1}{1009.1010}\right)⋮2019\)  (đpcm)