Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S = 1.2 + 2.3 + 3.4 + ... + 99.100
S có thể được viết lại thành:
S = 1(2 - 0) + 2(3 - 1) + 3(4 - 2) + ... + 99(100 - 98)
= 1.2 - 0 + 2.3 - 1 + 3.4 - 2 + ... + 99.100 - 98
= (1.2 + 2.3 + 3.4 + ... + 99.100) - (0 + 1 + 2 + ... + 98)
Để tính tổng 1.2 + 2.3 + 3.4 + ... + 99.100, ta sử dụng công thức:
S = n(n+1)(2n+1)/6
Với n = 99, ta có:
S = 99.100.199/6 = 331650
Tính tổng 0 + 1 + 2 + ... + 98, ta sử dụng công thức:
S = n(n+1)/2
Với n = 98, ta có:
S = 98.99/2 = 4851
Do đó, S = 331650 - 4851 = 326799
b) B = 4924.12517.28−530.749.45529.162.748
B có thể được viết lại thành:
B = (4924.12517.28) / (530.749.45529.162.748)
B = (4924 / 530) . (12517 / 749) . (28 / 45529) . (162 / 162) . (748 / 748)
B = 9.17.28/45529 = 2^2 . 3^2 . 17 / 45529
B = 108 / 45529
c) C = (13+132+133+134).35+(135+136+137+138).39+...+(1397+1398+1399+13100).3101
C = (13(1 + 13 + 13^2 + 13^3)) . 3^5 + (13^5(1 + 13 + 13^2 + 13^3)) . 3^9 + ... + (13^97(1 + 13 + 13^2 + 13^3)) . 3^101
C = (1 + 13 + 13^2 + 13^3) . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)
C = 80 . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)
C = 80 . (13^5 . 3^4 . 3 + 13^9 . 3^8 . 3 + ... + 13^97 . 3^96 . 3)
C = 80 . (13^6 . 3^5 + 13^10 . 3^9 + ... + 13^98 . 3^97)
C = 80 . 3^5 (13^6 + 13^10 + ... + 13^98)
d) D = 3 - 3^2 + 3^3 - 3^4 + ... + 3^2017 - 3^2018
D = (3 - 3^2) + (3^3 - 3^4) + ... + (3^
Các bạn trả lời giúp mk nha. Mk đang cần gấp. Chều nay mk kiểm tra rồi
a: \(\Leftrightarrow-\dfrac{23}{5}\cdot\dfrac{50}{23}< x< \dfrac{-13}{5}:\dfrac{21}{15}=\dfrac{-13}{5}\cdot\dfrac{5}{7}=\dfrac{-13}{7}\)
=>-10<x<-13/7
hay \(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2\right\}\)
b: \(\Leftrightarrow-\dfrac{13}{3}\cdot\dfrac{1}{3}< x< \dfrac{-2}{3}\cdot\dfrac{4-3-9}{12}\)
\(\Leftrightarrow-\dfrac{13}{9}< x< \dfrac{4}{9}\)
mà x là số nguyên
nên \(x\in\left\{-1;0\right\}\)
a. \(\dfrac{11}{24}-\dfrac{5}{41}+\dfrac{13}{24}+0,5-\dfrac{36}{41}\)
\(=\left(\dfrac{11}{24}+\dfrac{13}{24}\right)+\left(\dfrac{-5}{41}-\dfrac{36}{41}\right)+0,5\)
\(=1+\left(-1\right)+0,5\)
\(=0,5\)
b. \(-12:\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2\)
\(=-12:\left(\dfrac{-1}{12}\right)^2\)
\(=-12:\dfrac{1}{144}\)
\(=-1728\)
c. \(\dfrac{7}{23}.\left[\left(-\dfrac{8}{6}\right)-\dfrac{45}{18}\right]\)
\(=\dfrac{7}{23}.\dfrac{-23}{6}\)
\(=\dfrac{-7}{6}\)
d. \(23\dfrac{1}{4}.\dfrac{7}{5}-13\dfrac{1}{4}:\dfrac{5}{7}\)
\(=23\dfrac{1}{4}.\dfrac{7}{5}-13\dfrac{1}{4}.\dfrac{7}{5}\)
\(=\left(23\dfrac{1}{4}-13\dfrac{1}{4}\right).\dfrac{7}{5}\)
\(=10.\dfrac{7}{5}\)
\(=14\)
e. \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right).\left(0,8-\dfrac{3}{4}\right)^2\)
\(=\dfrac{17}{12}.\left(\dfrac{1}{20}\right)^2\)
\(=\dfrac{17}{12}.\dfrac{1}{400}=\dfrac{17}{4800}\)
1.Tính
a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)
b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)
c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)
d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)
e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)
Bài 2
a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)
\(x=\dfrac{13}{49}\)
b.\(\left|x-1,5\right|=2\)
Xảy ra 2 trường hợp
TH1
\(x-1,5=2\)
\(x=3,5\)
TH2
\(x-1,5=-2\)
\(x=-0,5\)
Vậy \(x=3,5\) hoặc \(x=-0,5\) .
Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+........+\dfrac{1}{100^2}\)
Ta có :
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
...................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}=\dfrac{6}{25}\)
Mà \(\dfrac{1}{6}< \dfrac{5}{26}< \dfrac{1}{4}\)
Mà \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+.........+\dfrac{1}{100^2}< \dfrac{6}{25}\)
\(\Leftrightarrow\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+.......+\dfrac{1}{100^2}< \dfrac{1}{4}\left(đpcm\right)\) \(\left(1\right)\)
a. = \(\dfrac{-1}{24}-\left\{\dfrac{1}{4}-\dfrac{-3}{8}\right\}\)
= \(\dfrac{-1}{24}-\left\{\dfrac{1}{4}+\dfrac{3}{8}\right\}\)
= \(\dfrac{-1}{24}-\dfrac{5}{8}\)
= \(\dfrac{-2}{3}\)
b. = \(12\dfrac{7}{88}-3\dfrac{5}{11}\)
= \(8\dfrac{5}{8}\)
c. = \(\dfrac{-28}{9}+\dfrac{-413}{9}\)
= \(-49\)
d. = \(\dfrac{8}{35}:\dfrac{2}{11}+\dfrac{-8}{35}:\dfrac{2}{11}\)
= \(\dfrac{2}{11}:\left(\dfrac{8}{35}+\dfrac{-8}{35}\right)\)
= 0
\(S=\dfrac{1}{5^2}+\dfrac{1}{5^4}+\dfrac{1}{5^6}+...+\dfrac{1}{5^{2018}}\\ 25S=25\left(\dfrac{1}{5^2}+\dfrac{1}{5^4}+\dfrac{1}{5^6}+...+\dfrac{1}{5^{2018}}\right)\\ 25S=1+\dfrac{1}{5^2}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{2016}}\\ 25S-S=\left(1+\dfrac{1}{5^2}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{2016}}\right)-\left(\dfrac{1}{5^2}+\dfrac{1}{5^4}+\dfrac{1}{5^6}+...+\dfrac{1}{5^{2018}}\right)\\ 24S=1-\dfrac{1}{5^{2018}}< 1\\ \Rightarrow S< \dfrac{1}{24}\)