K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

ko biết

2 tháng 8 2015

\(x+y+z+t=0\Rightarrow t=-\left(x+y+z\right)\)

Ta có: 

\(VT=x^3+y^3+z^3+t^3=x^3+y^3+z^3-\left(x+y+z\right)^3\)

\(=x^3+y^3+z^3-\left[x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]\)

\(=-3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(VP=3\left[xy+z\left(x+y+z\right)\right]\left(z-x-y-z\right)=3\left(xy+yz+zx+z^2\right)\left(-x-y\right)\)

\(=-3\left(y+z\right)\left(z+x\right)\left(x+y\right)\)

Do VT = VP nên ta có đpcm.

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Bạn xem lại đề. Nếu không có thêm điều kiện gì của $x,y,z$ (chả hạn nguyên, nguyên dương) thì không giải được đâu.

NV
18 tháng 2 2020

\(\frac{1}{x+y+z}+\frac{1}{3}=\frac{1}{x+y+z}+\frac{1}{3xyz}\ge\frac{2}{\sqrt{3xyz\left(x+y+z\right)}}\ge\frac{2}{xy+yz+zx}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2017

Lời giải:

Ta có: \(\left\{\begin{matrix} xy+x+y=3\\ yz+y+z=8\\ zx+z+x=15\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x+1)(y+1)=4\\ (y+1)(z+1)=9\\ (z+1)(x+1)=16\end{matrix}\right.(1)\)

Nhân 3 vế với nhau:

\(\Rightarrow [(x+1)(y+1)(z+1)]^2=4.9.16\)

\(\Leftrightarrow (x+1)(y+1)(z+1)=\pm 24\)

Nếu \((x+1)(y+1)(z+1)=24(2)\)

Từ \((1),(2)\Rightarrow \left\{\begin{matrix} z+1=6\\ x+1=\frac{8}{3}\\ y+1=\frac{3}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=\frac{5}{3}\\ y=\frac{1}{2}\\ z=5\end{matrix}\right.\)

Do đó, \(P=x+y+z=\frac{43}{6}\)

Nếu 

\((x+1)(y+1)(z+1)=-24(3)\)

Từ $(1);(3)$ suy ra \(\left\{\begin{matrix} z+1=-6\\ x+1=\frac{-8}{3}\\ y+1=\frac{-3}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} z=-7\\ x=-\frac{11}{3}\\ y=\frac{-5}{2}\end{matrix}\right.\)

Do đó, \(P=x+y+z=-\frac{79}{6}\)

 

14 tháng 4 2018

Thưa thầy. Hình như phải xét 2 trường hợp chứ ạ?