Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = n^5 - 5n^3 + 4n = (n.n^4 - 5n^2 + 4)
= n.(n^4 - 4n^2 - n^2 + 4)
= n. [n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n - 1) . (n + 1) . (n + 2)
=> A chia hết cho 120
Ta có \(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
Ta có n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp => nó chia hết cho 5 và chia hết cho 3
mặt khác, sẽ tồn tại 2 số chăn liên tiép, 1 số chia hết cho 2 và số còn lại chia hết cho 4 => tích chia hết cho 8
mà 3,5,8 có ước chung lớn nhất =1 => n(n-1 )(n-2)(n+2) chia hết cho 120 (ĐPCM)
f(n) = n^5-5n^3+4n
=n5-n3-4n3+4n
=n3.(n2-1)-4n.(n2-1)
=n(n2-1)(n2-4)
=n.(n-1)(n+1)(n-2)(n+2)
ta có: n+1 và n là hai số nguyên liên tiếp nên: n.(n-1) chia hết cho 2
n-1;n;n+1 là ba số nguyên liên tiếp nên: n(n-1)(n+1) chia hết cho 3
n-1;n;n+1;n+2 là bốn số nguyên liên tiếp nên: n(n-1)(n+1)(n+2) chia hết cho 4
n-2;n-1;n;n+1;n+2 là năm số nguyên liên tiếp nên n.(n-1)(n+1)(n-2)(n+2) chia hết cho 5
Suy ra: n.(n-1)(n+1)(n-2)(n+2) chia hết cho 2.3.4.5=120
Vậy f(n) chia hết cho 129 với mọi n thuộc Z
a: \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=4n\left(2n+2\right)⋮8\)
n^5-5n^3+4n
=(n^5-n^4)+(n^4-n^3)-(4n^3-4n^2)-(4n^2-4n)
=n^4(n-1)+n^3(n-1)-4n^2(n-1)-4n(n-1)
=(n^4+n^3-4n^2-4n)(n-1)
=n(n^3+n^2-4n-4)(n-1)
=n[n^2(n+1)-4(n+1)](n-1)
=n(n^2-4)(n+1)(n-1)
=n(n-2)(n+2)(n+1)(n-1)
Mà 5 số tự nhiên liên tiếp chia hết cho 120
=> ĐPCM