Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{2x^2-10xy}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)
\(=\dfrac{2x\left(x-5y\right)}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)
\(=\dfrac{x-5y}{y}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)
\(=\dfrac{x\left(x-5y\right)+x\left(5y-x\right)+y\left(x+2y\right)}{xy}\)
\(=\dfrac{x^2-5xy+5xy-x^2+xy+2y^2}{xy}\)
\(=\dfrac{y\left(x+2y\right)}{xy}\)
b) \(\dfrac{x+1}{2x-2}+\dfrac{x^2+3}{2-2x^2}\)
\(=\dfrac{x+1}{2x-2}-\dfrac{x^2+3}{2x^2-2}\)
\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x^2-1\right)}\)
\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\) MTC: \(2\left(x-1\right)\left(x+1\right)\)
\(=\dfrac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+1\right)-\left(x^2+3\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)^2-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)
e) \(\dfrac{2x^2-xy}{x-y}+\dfrac{xy+y^2}{y-x}+\dfrac{2y^2-x^2}{x-y}\)
\(=\dfrac{2x^2-xy}{x-y}-\dfrac{xy+y^2}{x-y}+\dfrac{2y^2-x^2}{x-y}\)
\(=\dfrac{\left(2x^2-xy\right)-\left(xy+y^2\right)+\left(2y^2-x^2\right)}{x-y}\)
\(=\dfrac{2x^2-xy-xy-y^2+2y^2-x^2}{x-y}\)
\(=\dfrac{x^2-2xy+y^2}{x-y}\)
\(=\dfrac{\left(x-y\right)^2}{x-y}\)
\(=x-y\)
a: \(=\dfrac{2x^2+2xy-xy-y^2}{2x^2-2xy-xy+y^2}=\dfrac{\left(x+y\right)\left(2x-y\right)}{\left(x-y\right)\left(2x-y\right)}=\dfrac{x+ỹ}{x-y}\)
b: Sửa đề:\(\dfrac{\left(x+y\right)^2}{2y^2+xy-x^2}\)
\(=\dfrac{\left(x+y\right)^2}{2y^2+2xy-xy-x^2}\)
\(=\dfrac{\left(x+y\right)^2}{\left(x+y\right)\left(2y-x\right)}=\dfrac{x+y}{2y-x}\)
\(\dfrac{x^4-xy^3}{2xy+y^2}:\dfrac{x^3+x^2y+xy^2}{2x+y}\)
\(=\dfrac{x\left(x^3-y^3\right)}{y\left(2x+y\right)}:\dfrac{x\left(x^2+xy+y^2\right)}{2x+y}\)
\(=\dfrac{x\left(x-y\right)\left(x^2+xy+y^2\right)}{y\left(2x+y\right)}:\dfrac{x\left(x^2+xy+y^2\right)}{2x+y}\)
\(=\dfrac{x\left(x-y\right)\left(x^2+xy+y^2\right)\left(2x+y\right)}{y\left(2x+y\right)x\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x-y}{y}\)
ĐKXĐ: \(x,y\ne0;x\ne-\dfrac{1}{2}y\)
\(\dfrac{x^4-xy^3}{2xy+y^2}:\dfrac{x^3+x^2y+xy^2}{2x+y}\)
\(=\dfrac{x\left(x^3-y^3\right)}{y.\left(2x+y\right)}:\dfrac{x\left(x^2+xy+y^2\right)}{2x+y}\)
\(=\dfrac{x\left(x-y\right)\left(x^2+xy+y^2\right)}{y.\left(2x+y\right)}.\dfrac{2x+y}{x.\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x-y}{y}\left(x;2x+y;x^2+xy+y^2\ne0\right)\)
a: \(=\left(\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\right):\dfrac{x+y}{xy}\)
\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)}\cdot\dfrac{xy}{x+y}\)
\(=\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\)
b: \(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x-y}{2y}\)
\(=\dfrac{4xy+4y^2}{2\left(x+y\right)}\cdot\dfrac{1}{2y}=\dfrac{4y\left(x+y\right)}{4y\left(x+y\right)}=1\)
\(a,\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}:\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=\left(\frac{x}{y\left(x-y\right)}+\frac{y-2x}{x\left(x-y\right)}\right):\left(\frac{y}{xy}+\frac{x}{xy}\right)\)
\(=\left(\frac{x-y}{x\left(x-y\right)}\right):\left(\frac{x+y}{xy}\right)\)
\(=\frac{1}{x}.\frac{xy}{x+y}=\frac{y}{x+y}\)
a: \(=\dfrac{4x^2+4x+1-\left(4x^2-4x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{8x}{2x+1}\cdot\dfrac{5}{4x}=\dfrac{10}{2x+1}\)
c: \(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)
\(=\dfrac{y\left(x^2+2xy+y^2\right)}{2x^2+2xy-xy-y^2}\)
\(=\dfrac{y\left(x+y\right)^2}{\left(x+y\right)\left(2x-y\right)}=\dfrac{y\left(x+y\right)}{2x-y}\)
\(=\dfrac{xy+y^2}{2x-y}\)