Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F(\(x\)) = - 2\(x\)3 + 7 - 6\(x\) + 5\(x^4\) - 2\(x^3\)
F(\(x\)) = (-2\(x^3\) - 2\(x^3\)) + 7 - 6\(x\) + 5\(x^4\)
F(\(x\)) = -4\(x^3\) + 7 - 6\(x\) + 5\(x^4\)
F(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7
G(\(x\)) = 5\(x^2\) + 9\(x\) - 2\(x^4\) - \(x^2\) + 4\(x^3\) - 12
G(\(x\)) = (5\(x^2\) - \(x^2\)) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12
G(\(x\)) = 4\(x^2\) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12
G(\(x\)) = -2\(x^4\) + 4\(x^3\) +4\(x^2\) + 9\(x\) - 12
b, F(\(x\)) + G(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7 + ( -2\(x^4\) + 4\(x^3\)+4\(x^2\)+9\(x\)-12)
F(\(x\)) + G(\(x\)) = 5\(x^4\)- 4\(x^3\) - 6\(x\)+ 7 - 2\(x^4\) + 4\(x^3\) + 4\(x^2\) + 9\(x\) - 12
F(\(x\)) + G(\(x\)) = (5\(x^{4^{ }}\) -2\(x^4\)) -(4\(x^3\) - 4\(x^3\)) + 4\(x^2\) + (9\(x\)-6\(x\)) - ( 12 - 7)
F(\(x\)) + G(\(x\)) = 3\(x^4\) + 4\(x^2\) + 3\(x\) - 5
a)f(x)=-3x4+2x3+x2+6x-6
g(x)=-x4-4x3+4x2-6x+8
h(x)=x3+2x-3
f(x)-g(x)+h(x)(cái này bạn đặt theo cột dọc vào giấy sao cho lũy thừa có số mũ bằng nhau thẳng hàng và thực hiện cộng trừ nhé)
=-2x4+7x3-3x2+12x-17
b)Ta có:
f(1)=-3.14+2.13+12+6.1-6=0
g(1)=-14-4.13+4.12-6.1+8=1
h(1)=13+2.1-3=0
=>x=1 là nghiệm của f(x) và h(x) nhưng không phải nghiệm của g(x)
a, f(x) = -2x\(^3\) + 7 - 6x + 5x\(^4\) - 2x\(^3\)
=5x\(^4\)+(-2x\(^3\)-2x\(^3\))-6x+7
=5x\(^4\)-4x\(^3\)-6x+7
g(x)= 5x\(^2\) + 9x - 2x\(^4\) - x\(^2\)+ 4x\(^3\) -12
=-2x\(^4\)+4x\(^3\)+(5x\(^2\)-x\(^2\))+9x-12
=-2x\(^4\)+4x\(^3\)+4x\(^2\)+9x-12
b,f(x)+g(x)=5x\(^4\)-4x\(^3\)-6x+7+-2x\(^4\)+4x\(^3\)+4x\(^2\)+9x-12
=(5x\(^4\)-2x\(^4\))+(-4x\(^3\)+4x\(^3\))+4x\(^2\)+(-6x+9x)+(7-12)
= 3x\(^4\)+4x\(^2\)+3x-5
:))
Ta có:
h(x)= -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2-( 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2)
=> h(x)=-2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2-2x2 + x3 - 3x - 3x3 - x2 + x + 9x - 2)
=> h(x)=x2+5x-2
b,
Cho x2+5x-2=0
=> ... tự giải :))
a,f(x)=2x^3+3x^2-2x+3
g(x)=2x^3+3x^2-7x+2
h(x)=f(x)-g(x)=(2x^3+3x^2-2x+3)-(2x^3+3x^2-7x+2)
=2x^3+3x^2-2x+3-2x^3-3x^2+7x-2
=(2x^3-2x^3)+(3x^2-3x^2)+(-2x+7x)+(3-2)
=5x+1
b,Đặt_h(x)=5x+1=0
5x=0-1
5x=-1
x=-1/5
Vậy_nghiệm_của_đa_thức_h(x)_là_-1/5
\(f\left(x\right)=9x^2+6x+2\)
\(=\left(9x^2+3x\right)+\left(3x+1\right)+1\)
\(=3x\left(3x+1\right)+\left(3x+1\right)+1\)
\(=\left(3x+1\right)\left(3x+1\right)+1\)
\(=\left(3x+1\right)^2+1\) \(>0\)
\(\Rightarrow\)đa thức vô nghiệm
b) \(g\left(x\right)=x^4-4x^2+2013\)
\(=\left(x^4-2x^2\right)-\left(2x^2-4\right)+2009\)
\(=x^2\left(x^2-2\right)-2\left(x^2-2\right)+2009\)
\(=\left(x^2-2\right)^2+2009\) \(>0\)
\(\Rightarrow\)đa thức vô nghiệm