Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(VT=\left(x+a\right)\left(x+b\right)=x^2+ã+bx+ab=x^2+\left(a+b\right)x+ab=VP\)
B. \(VT=\left(x+a\right)\left(x+b\right)\left(x+c\right)=\left[\left(x+a\right)\left(x+b\right)\right].\left(x+c\right)\)
\(=\left[\left(x^2+\left(a+b\right)x\right)+ab\right].\left(x+c\right)=x^3+x^2c+\left(a+b\right)x^2+c\left(a+b\right)x+abx+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc=VP\)
a ) VP = \(\left(x+a\right).\left(x+b\right)=x^2+bx+ax+ab\)
VT = \(x^2+\left(a+b\right).x+ab=x^2+ax+bx+ab\)
\(\Rightarrow VT=VP\)
b ) VP : \(\left(x+a\right).\left(x+b\right)\left(x+c\right)=\left(x^2+bx+ax+ab\right).\left(x+c\right)\) ( Vế đầu áp dụng luôn ở câu a )
\(=x^2.x+x^2.c+bx.x+bx.c+ax.x+ax.c+ab.x+ab.c\)
\(=x^3+cx^2+bx^2+cbx+ax^2+cax+abx+abc\)
\(=x^3+\left(cx^2+bx^2+ax^2\right)+\left(cbx+cax+abx\right)+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+ac+bc\right).x+abc\)
Vậy \(\left(x+a\right).\left(x+b\right).\left(x+c\right)=x^3+\left(a+b+c\right).x^2+\left(ab+ca+bc\right).x+abc\)
a) VP =\(\left(x+a\right)\left(x+b\right)=x^2+bx+\text{ax+ab}\)
\(VT=x^2+\left(a+b\right).x+ab=x^2+ax+bx+ab\\ =>VT=VP\)
b) VP : \(\left(x+a\right).\left(x+b\right).\left(x+c\right)=\left(x^2+bx+ax+ab\right).\left(x+c\right)\)( Vế đầu áp dụng luôn ở câu a )
\(=x^2.x+x^2.c+bx.x+bx.c+\text{ax}.x+\text{ax}.c+ab.c+ab.c\\ =x^3+cx^2+bx^2-cbx+\text{ax}^2+ca.x+ab.x+abc\\ \)
\(=x^3+\left(cx^2+bx^2+\text{ax}^2\right)-\left(cbx+c\text{ax}+abx\right)+abc\\ =x^3-\left(a+b+c\right)x^2+\left(ab+ac+bc\right).x+abc\)
Vậy \(\left(x+a\right)\left(x-b\right)\left(x+c\right)=x^3+\left(a+b+c\right).x^2+\left(ab+ca+bc\right).x+abc\)
a) \(\left(x+a\right).\left(x+b\right)=x.x+x.b+a.x+a.b=x^2+bx+ax+ab=x^2+\left(a+b\right)x+ab\)
Vậy (x + a) . (x + b) = x2 + (a + b) . x + ab.
b)\(\left(x+a\right).\left(x+b\right).\left(x+c\right)=\left(x^2+bx+ax+ab\right).\left(x+c\right)\)(Vế đầu mình áp dụng luôn ở câu a)
\(=x^2.x+x^2.c+bx.x+bx.c+ax.x+ax.c+ab.x+ab.c\)
\(=x^3+cx^2+bx^2+cbx+ax^2+cax+abx+abc\)
\(=x^3+\left(cx^2+bx^2+ax^2\right)+\left(cbx+cax+abx\right)+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+ac+bc\right)x+abc\)
Vậy (x + a) . (x + b) . (x + c) = x3 + (a + b + c) . x2 + (ab + bc + ca) . x + abc.
a) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left[x^2+\left(a+b\right)x+ab\right]\left(x+c\right)\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)
b) \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
c) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-bc^2\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ca\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Nhầm đoạn cuối là \(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
\(VT=\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left(x^2+bx+ax+ab\right)\left(x+c\right)\)
\(=x^3+bx^2+ax^2+abx+cx^2+bcx+acx+abc\)
\(=x^3+\left(ax^2+bx^2+cx^2\right)+\left(abx+bcx+cax\right)+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc=VP\)
\(\Rightarrowđpcm\)
Ta có: (x+a)(x+b)(x+c) = x3 + (a+b+c)x2 +(ab+bc+ca)x + abc
VT = (x2+ax+bx+ab)(x+c)
= x3 + ax2 + bx2 + abx + cx2 + cax + bcx + abc (1)
VP = x3 + (a+b+c)x2 +(ab+bc+ca)x + abc
= x3 + ax2 + bx2 + abx + cx2 + cax + bcx + abc (2)
Từ (1) và (2), suy ra:
(x+a)(x+b)(x+c) = x3 + (a+b+c)x2 +(ab+bc+ca)x + abc
TC:a+b+cd=2p=>b+c=2p-a
=>(b+c)2=(2p-a)2
=>b2+2bc+c2=4p2-4pa+a2
=>b2+2bc+c2-a2=4p2-4pa
=>2bc+b2+c2-a2=4p(p-a) ĐPCM
Ta có : \(a+b+cd=2p\Rightarrow b+c=2p-a\)
\(\Rightarrow\left(b+c\right)^2=\left(2p-a\right)^2\)
\(\Rightarrow b^2+2bc+c^2=4p^2-4pa+a^2\)
\(\Rightarrow b^2+2bc+c^2-a^2=4p^2-4pa\)
\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
\(\RightarrowĐPCM\)
a)(x+a)(x+b)
=x(x+b)+a(x+b)
=x2+xb+ax+ab
=x2+(a+b).x+a.b
Vậy (x+a)(x+b)=x2+(a+b).x+a.b
b)(x+a)(x+b)(x+c)
=x(x+b)(x+c)+a(x+b)(x+c)
=(x2+xb)(x+c)+(ax+ab)(x+c)
=x2(x+c)+xb(x+c)+ax(x+c)+ab(x+c)
=x3+x2.c+x2.b+xbc+ax2+axc+abx+abc
=x3+(a+b+c).x2+(ab+bc+ca).x+abc
Vậy (x+a)(x+b)(x+c)=x3+(a+b+c).x2+(ab+bc+ca).x+abc
c)(a+b+c)(a2+b2+c2-ab-bc-ca)
=a(a2+b2+c2-ab-bc-ca)+b(a2+b2+c2-ab-bc-ca)+c(a2+b2+c2-ab-bc-ca)
=a3+ab2+ac2-a2.b-abc-a2.c+ba2+b3+bc2-ab2-b2.c-bca+ca2+cb2+c3-cab-bc2-c2.a
=a3+b3+c3 -abc-bca-cab
=a3+b3+c3 -3abc
Vậy (a+b+c)(a2+b2+c2-ab-bc-ca)=a3+b3+c3 -3abc
a: (x+a)(x+b)
\(=x^2+bx+ax+ab\)
\(=x^2+x\left(a+b\right)+ab\)
b: \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left(x^2+ax+bx+ab\right)\left(x+c\right)\)
\(=x^3+x^2c+ax^2+axc+bx^2+bxc+abx+abc\)
\(=x^3+x^2\left(a+b+c\right)+x\left(ab+bc+ca\right)+abc\)