Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99
S = (1 - 3 + 3^2 - 3^3) + ... + (3^96 - 3^97 + 3^98 - 3^99 )
S = (-20) + (-20) +...+ (-20) (24 số -20)
S = (-20).24 chia hết cho -20
=> đpcm
Câu hỏi của Nguyễn Dương - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo.
tổng s có 100 số hạng, nhóm thành 25 nhóm mỗi nhóm có 4 số hạng, có tổng chia hết cho 20
a) A = 20 + 21 + 22 + ... + 299
2A = 21 + 22 + 23 + ... + 2100
2A - A = (21 + 22 + 23 + ... + 2100) - (1 + 2 + 22 + ... + 299)
A = 2100 - 1
A + 1 = 2100 - 1 + 1 = 2100 = (250)2
\(\Rightarrow\) A là số chính phương
b) B = 3 + 32 + 33 + ... + 399
3B = 32 + 33 + 34 + ... + 3100
3B - B = (32 + 33 + 34 + ... + 3100) - (3 + 32 + 33 + ... + 399)
2B = 3100 - 3
2B + 3 = 3100 - 3 + 3 = 3100 = (350)2
\(\Rightarrow\) B là số chính phương
a) S=1-3+32-33+...+398-399
=>S=(1-3+32-33)+(34-35+36-37)+(38-39+310-311)+...+(396-397+398-399)
=>S=-20+34.(1-3+32-33)+38.(1-3+32-33)+...+396.(1-3+32-33)
=>S=-20+34.(-20)+38.(-20)+...+396.(-20)
=>S=-20.(1+34+38+...+396)
=>S chia hết cho -20
b) S=S = 1 - 3 + 32 - 33 + ... + 398 - 399
=>3S=3-32+33-34+...+399-3100
=>3S+S=(3-32+33-34+...+399-3100)+(1-3+32-33+...+398-399)
=>4S=1-3100
=>S=1-3100 /4
Ta có : S = 1 - 3 + 32 - 33 + 34 - 35 +...+ 398 - 399
=> 3S = 3 - 32 + 33 - 34 + 35 - 36 +...+ 399 - 3100
Lấy 3S + S = (3 - 32 + 33 - 34 + 35 - 36 +...+ 399 - 3100 ) + ( 1 - 3 + 32 - 33 + 34 - 35 +...+ 398 - 399 )
4S = 3100 + 1
=> \(S=\frac{3^{100}+1}{4}\Leftrightarrow3^{100}+1⋮4\) (vì sở dĩ tổng S là số nguyên)
=> 3100 : 4 dư 1
S = (1+3+3^2)+(3^3+3^4+3^5)+.....+(3^97+3^98+3^99)
= 10+3^3.(1+3+3^2)+.....+3^97.(1+3+3^2)
= 10+3^3.10+.....+3^97.10
= 10.(1+3^3+....+3^97) chia hết cho 10
Mà 10 chia hết cho 5 => S chia hết cho 5
k mk nha
\(S=1+3+3^2+3^3+...+3^{99}\)
\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4+3^2.4+...+3^{98}.4\)
\(=4\left(1+3^2+...+3^{98}\right)⋮4\)
Vậy S chia hết cho 4