K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

a) 

S = 4 + 42 + 43 + ... + 499 + 4100

S = ( 4 + 42 ) + ( 4+ 44 ) + ... + ( 499 + 4100 )

S = 4( 1 + 4) + 43.( 1 + 4) + ... + 499( 1 + 4)

S = 4.5 + 43.5 + .. + 499.5

S = ( 4 + 43 + .. +499).5 => S \(⋮\)5

b) S = 2 + 22 + 23 + ... + 22009  + 22010

=> S \(⋮\)2

S = = 2 + 22 + 23 + ... + 22009 + 22010

S = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )

S = 2( 1 + 2 ) + 23( 1 + 2 ) + ... +22009( 1 + 2 )

S = 2.3 + 23.3 +... +22009.3

S = ( 2 + ... +22009 ) x 3

=> s\(⋮\) 3

=> S chia he^'t cho 2 va` 3 ne^n S \(⋮\) 6

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

21 tháng 12 2016

Có A=(2^1+2^2)+(2^3+2^4)+....+(2^99+2^100)

A= 2(1+2)+2^3(1+2)+....+2^99(1+2)

A=2.3+2^3.3+...+2^99.3

A=3(2+2^3+....+2^99) chia hết cho 3

21 tháng 12 2016

b)S=0-2+4-6+...-2010+2012.

S=(0+4+...+2012) - (2+6+...+2010).

S=507024 - 506018

S=1006.

6 tháng 2 2016

a ) S = 4 + 42 + 43 + 44 + ..... + 499 + 4100

S = ( 4 + 42 ) + ( 43 + 44 ) + .... + ( 497 + 498 ) + ( 499 + 4100 )

⇒ S = 4.( 1 + 4 ) + 43.( 1 + 4 ) + ...... + 497.( 1 + 4 ) + 499.( 1 + 4 )

⇒ S = 4.5 + 43.5 + ..... + 497.5 + 499.5

⇒ S = 5.( 4 + 43 + ..... + 497 + 499 )

Vì 5 ⋮ ⋮ 5 ( đpcm )

Câu b tương tự .

 

6 tháng 2 2016

Làm theo công thức nhé!!

20 tháng 12 2015

tích từ bài từng câu a , b , ... ra đi

17 tháng 10 2021

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha


 

24 tháng 10 2023

ko bt lm

 

3 tháng 10 2015

2011^2002 = 2011^2000 . 2011^2  = (2011^5)^400 . 2011^2 = (.......5)^400 . ....1 = .....5  .   ......1 = ........5                                                     2009^2000 = (2009^5)^400 = tận cùng là 9 hoặc 1                                                                                                                                                                vậy A ko chia hết cho 5                                                                                                                                                     B =   2 + 2^2 + 2^3 + ..... + 2^100                                                                                                                                                             2B =        2^2 + 2^3 +...................+ 2^101                                                                                                                                                   B = 2^101 - 2  = 2^100 . 2 -2   = (2^4)^25 . 2 - 2  =   16^25 .2 - 2  =  .....6 . 2 -2  =   .......2 - 2 = .......0                                                             vậy B chia hết cho 2