Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
Vậy A > 3/5
Phần 2.
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) < 1/4 ; (1/51 + 1/52+...+1/59+1/60) < 1/5
Mà S = (1/3 + 1/4 + 1/5) < 4/5 (Vì 1/3 + 1/5 < 3/5 hay 7/12 < 3/5 hay 35/60 < 36/60)
Vậy S < 4/5
ta có B= 1/31+1/32+1/33+...+1/60
=> B=(1/30+1/30+...+1/30) + (1/40+1/40+1/40+...+1/40)
10 số hạng 10 số hạng
=> B< 10/30+10/40+10/50
=> = 1/3+1/4+1/5
=> = 47/60
=> B< 47/60 < 48/60= 4/5
Vế 2 tự làm nha bà
1.
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{100.102}\)
\(=\frac{4-2}{2.4}+\frac{6-4}{4.6}+....+\frac{102-100}{100.102}\)
\(=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{100}-\frac{1}{102}\right)\times\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{102}\right)\times\frac{1}{2}\)
\(=\frac{25}{51}\times\frac{1}{2}\)
\(=\frac{25}{102}\)
1,
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{100.102}\)
\(2A=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{100.102}\)
\(2A=\frac{4-2}{2.4}+\frac{6-4}{4.6}+...+\frac{102-100}{100.102}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{102}\)
\(2A=\frac{1}{2}-\frac{1}{102}\)
\(2A=\frac{25}{51}\)
\(A=\frac{25}{102}\)
2,câu hỏi tương tự