K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

Mình có cách hay hơn nha !

Xét 2^n.(2^n+1).(2^n+2)

Ta thấy 2^n;2^n+1;2^n+2 là 3 số tự nhiên liên tiếp nên trong 3 số có 1 số chia hết cho 3

=> 2^n.(2^n+1).(2^n+2) chia hết cho 3

Mà 2^n và 3 là 2 số nguyên tố cùng nhau

=> (2^n+1).(2^n+2) chia hết cho 3

Tk mk nha

11 tháng 3 2018

Đây là KQ của mik

Ta có: \(\left(2^n+1\right)\left(2^n+2\right)\)

\(=4^n+2^n\left(1+2\right)+2\)

Suy ra: \(=\left(4^n+2\right)+3\cdot2^n\)

Mặt khác: \(4^n\equiv1\)(mod 3)

Suy ra: \(\left(2^n+1\right)\left(2^n+2\right)\equiv3+3\cdot2^n=3\left(2^n+1\right)\)(mod 3)

Vậy: .....................

11 tháng 9 2020

Bài chỉ chứng minh vế phải chia hết vế trái chứ k tìm n hay a nhé bạn

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Nguyễn Ngọc Phương: Mình đâu có tìm $n,a$ đâu hả bạn? Mình đang chỉ ra TH sai mà???

Chả hạn, chứng minh $n(n+1)(n^2+1)\vdots 5$ thì có nghĩa mọi số tự nhiên/ nguyên $n$ đều phải thỏa mãn. Nhưng chỉ cần có 1 TH $n$ thay vào không đúng nghĩa là đề không đúng rồi.

NV
4 tháng 11 2019

\(\left(n+1\right)\left(n+2\right)...\left(2n\right)=\frac{\left(2n\right)!}{n!}=\frac{1.3.5...\left(2n-1\right).2.4.6...2n}{n!}\)

\(=\frac{1.3.5...\left(2n-1\right).\left(1.2\right)\left(2.2\right)\left(3.2\right)...\left(n.2\right)}{n!}=\frac{1.3.5...\left(2n-1\right).n!.2^n}{n!}\)

\(=1.3.5...\left(2n-1\right).2^n⋮2^n\)

1 tháng 11 2018

Ta có: \(2\equiv-1\left(mod 3\right)\Rightarrow2^n\equiv\left(-1\right)^n\left(mod3\right)\)

Vì n là số tự nhiên nên n có dạng 2k hoặc 2k + 1 (k là số tự nhiên)

+) Nếu n có dạng 2k \(\Rightarrow2^n\equiv\left(-1\right)^n\equiv\left(-1\right)^{2k}\equiv\left[\left(-1\right)^2\right]^k\equiv1\left(mod3\right)\Rightarrow2^n-1\equiv0\left(mod3\right)\Rightarrow2^n-1⋮3\Rightarrow A⋮3\)

Nếu n có dạng 2k + 1 \(\Rightarrow2^n\equiv\left(-1\right)^{2k+1}\equiv\left(-1\right)^{2k}.\left(-1\right)\equiv-1\left(mod3\right)\Rightarrow2^n+1\equiv0\left(mod3\right)\Rightarrow2^n+1⋮3\Rightarrow A⋮3\)

22 tháng 10 2018

Vì \(2^n-1\)và \(2^n+1\)là 2 số lẻ liên tiếp

Đặt \(2^n-1=3k\)và \(2^n+1=3k+2\)\(k\inℕ\)

\(\Rightarrow\left(2^n-1\right).\left(2^n+1\right)=3k.\left(3k+2\right)\)

mà \(3k⋮3\)\(\Rightarrow3k.\left(3k+2\right)⋮3\)

hay \(A⋮3\left(đpcm\right)\)

14 tháng 8 2019

\(b,n^2\left(n^4-1\right)\)

\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)

Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp

\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)

\(\Rightarrowđpcm\)

=> 

7 tháng 4 2017

Xét các dạng của n trong phép chia cho 2 và 3

2k  , 2k+1

3p, 3p+1. 3p+2

Bạn tham khảo :

Violympic toán 9