Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(B=2+2^2+2^3+...+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+2^5\cdot\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)⋮5\)
\(B=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\left(2+2^6+...+2^{96}\right)⋮31\)
Gọi C là giá trị của biểu thức trên
a) CMR : C chia hết cho 31
\(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(C=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{19}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(C=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(C=2.31+2^6.31+...+2^{96}.31\)
\(C=31\left(2+2^6+2^{10}+...+2^{96}\right)⋮31\)(đpcm)
b) CMR : C chia hết cho 5
\(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{97}+2^{99}\right)+\left(2^{98}+2^{100}\right)\)
\(=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)+2^{98}\left(1+2^2\right)\)
=\(2.5+2^2.5+...+2^{97}.5+2^{98}.5\)
\(=5\left(2+2^2+...+2^{97}+2^{98}\right)⋮5\)(đpcm)
Vậy 2 + 2^2 + 2^3 + ...+ 2^98 + 2^99 + 2^100 vừa chia hết cho 5 vừa chia hết cho 31
1)
a) 1+5+5^2+5^3+....+5^101
=(1+5)+(5^2+5^3)+....+(5^100+5^101)
=6+5^2.(1+5)+...+5^100(1+5)
=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6
b) 2+2^2+2^3+...+2^2016
=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)
=2.31+2^6.31+...+2^2012.31 chia hết cho 31
Tương tự như câu a lên mk rút gọn
2) còn bài a kì quá abc deg là sao nhỉ
b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8
bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại
\(1+5+5^2+5^3+...+5^{101}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{100}+5^{101}\right)\)
\(=1+5+5^2\left(1+5\right)+5^4\left(1+5\right)+...+5^{100}\left(1+5\right)\)
\(=6+5^2.6+5^4.6+...+5^{100}.6\)
\(\Rightarrow6+6\left(5^2+5^4+5^6+...5^{100}\right)⋮6\)
\(\Rightarrow1+5+5^2+5^3+...+5^{101}⋮6\)
\(C=2+2^2+2^3+......+2^{100}⋮31\)
\(C=2.\left(1+2+2^2+2^3+2^4\right)+2^{95}.\left(1+2+2^2+2^3+2^4\right)\)
\(C=2.31+.......+2^{95}+31\)
\(C=31.\left(2+2^{95}\right)⋮31\)
\(\Rightarrow C⋮31\)
did you studied at le van tam primary school
giúp với mình đang cần gấp