\(⋮\)5

b) 119...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : 810 - 89 - 88 = 88 . ( 82 - 8 - 1 ) = 88 . ( 64 - 8 - 1 ) = 88 . 55

Vì 55 \(⋮\)55

=> 88 . 55\(⋮\)55

=> 810 - 89 - 88\(⋮\)55 ( đpcm )

Vậy bài toán được chứng minh

               Ai fan Các Ae Động Nhà Bangtan thì kb nha =))

P/s : BANGTAN BANGTAN BANGBANGTAN !!!

                  ~*~ BTS ~*~ A.R.M.Y ~*~                            

12 tháng 10 2017
8^10-8^9-8^8=8^8(8^2-8-1) = 8^8*55 chia hết cho 55

\(=11^9+11^8+11^7+11^6+11^5+11^4+11^3+11^2+11+1\)

\(=\left(11^4+11^3+11^2+11+1\right)\cdot\left(1+11^5\right)=\left(1+11^5\right)\cdot16105⋮5\)

30 tháng 6 2018

\(e)\) \(81^7-27^9-9^{13}\)

\(=\)\(\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

\(=\)\(3^{28}-3^{27}-3^{26}\)

\(=\)\(3^{24}\left(3^4-3^3-3^2\right)\)

\(=\)\(3^{24}\left(81-27-9\right)\)

\(=\)\(3^{24}.45⋮45\)

Vậy \(81^7-27^9-9^{13}⋮45\)

\(g)\) \(10^9+10^8+10^7\)

\(=\)\(10^6\left(10^3+10^2+10\right)\)

\(=\)\(10^6\left(1000+100+10\right)\)

\(=\)\(10^6.1110\)

\(=10^6.2.555⋮555\)

Vậy \(10^9+10^8+10^7⋮555\)

Chúc bạn học tốt ~ 

30 tháng 6 2018

a) ta có : \(\overline{ab}\)+\(\overline{ba}\) = (10a+b)+(10b+a)= 11a+11b \(⋮\)11

b) tương tự

16 tháng 11 2018

nhanh lên mk đang gấp

\(1\)

\(A=11^9+11^8+11^7+...+11+1\)

\(\Rightarrow A=11^9+11^8+11^7+...+11^1+11^0\)

\(\Rightarrow A=\left(...1\right)+\left(...1\right)+\left(...1\right)+...+\left(...1\right)+1\)

\(\Rightarrow A=\left(.....0\right)⋮5\)

\(\text{Vậy }A⋮5\)

\(2\)

\(n^2+n+1=n.n+n.1+1=n\left(n+1\right)+1\)

\(\text{Mà n ( n + 1 ) là hai số liên tiếp nên chúng là số chãn}\)

\(\Rightarrow n\left(n+1\right)+1\text{là số lẻ}\)

\(\Rightarrow\left(n^2+n+1\right)⋮4̸\)

14 tháng 3 2018

gọi ý thôi nhé!!!!!

a, bn tách

abcdeg = ab.10000 + cd.100 + eg

= a.9999 + cd.99 + (ab+cd+eg)

rồi cm

b, cm chia hết cho 3        > nhóm 2 số

cm chia hết cho 7 --------> nhóm 3 số

cm chia hết cho 15 -------> nhóm 4 số

4 tháng 7 2019

Em học đồng dư chưa?

Nếu học rồi thì có thể làm theo cách này:

a) \(6\equiv1\left(mod5\right)\)

=> \(6^{100}\equiv1^{100}\equiv1\left(mod5\right)\)

=> \(6^{100}-1\equiv1-1\equiv0\left(mod5\right)\)

=> \(6^{100}-1⋮5\)

Câu b, c làm tương tự

 Còn nếu chưa học kiến thức đồng dư

a) \(6^{100}\)có chữ số tận cùng là 6

=> \(6^{100}-1\)có chữ số tận cùng là 5

=> \(6^{100}-1\) chia hết cho 5

b) \(21^{20}\) có chữ số tận cùng là 1

\(11^{10}\)có chữ số tận cùng là 1

=> \(21^{20}-11^{10}\) có chữ số tận cùng là 0

=> \(21^{20}-11^{10}\) chia hết cho 2 và 5

c) \(10^{10}-1=100...00-1\)( có 10 chữ số 0)

\(=99..9\)

(có 9 chữ số 9)

=> \(10^{10}-1\) chia hết cho 9

3 tháng 11 2017

a/ \(1+5+5^2+..........+5^{501}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+............+\left(5^{500}+5^{501}\right)\)

\(=1\left(1+5\right)+5^2\left(1+5\right)+...........+5^{500}\left(1+5\right)\)

\(=1.6+5^2.6+.............+5^{500}.6\)

\(=6\left(1+5^2+..........+5^{500}\right)⋮6\left(đpcm\right)\)

b/ \(2+2^2+2^3+............+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+............+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+............+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+..........+2^{96}.31\)

\(=31\left(2+........+2^{96}\right)⋮31\left(đpcm\right)\)

3 tháng 11 2017

a)1+5+5^2+5^3+........+5^501

= 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501)

=6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500)

=6+150(5^2+5^3+.......+5^500)

mà 6 chia hết cho 6

150(5^2+5^3+.......+5^500) chia hết cho 6

=> 6+150(5^2+5^3+.......+5^500) chia hết cho 6

=> 6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500) chia hết cho 6

=> 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501) chia hết cho 6

=> 1+5+5^2+5^3+........+5^501 chia hết cho 6

25 tháng 10 2016

1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.

=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp

- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:

n.( n+1). ( n+2) \(⋮\)2.

- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.

Mà 2 và 3 là hai số nguyên tố cùng nhau.

Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).

2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.

=> 3n+3 + 3n+1 + 2n+3 + 2n+2

= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22

= 3n. (27+3) + 2n . ( 8+4)

= 6. ( 3n . 5 + 2n . 2)

= 6k với k = 3n . 5 + 2n+1

Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).

3) a) ( 6100 - 1) \(⋮\) 5

b) 2120 - 1110 chia hết cho cả 2 và 5

a) ( 6100 - 1) \(⋮\)5

=> Số 6100 có chữ số tận cùng là 6.

Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)

=> ( 6100 - 1) \(⋮\)5(đpcm).

b) 2120 - 1110 chia hết cho cả 2 và 5.

=> Số 2120 có chữ số tận cùng là 1.

Số 1110 có chữ số tận cùng cũng là 1.

Nên 2120 - 1110 là số có chữ số tận cùng là 0.

=> 2120 - 1110 chia hết cho 2 và 5(đpcm).

4) Chứng minh rằng:

a) ( 450+108+180) \(⋮\)9

b) ( 1350 +735+255) \(⋮\)5

c) ( 32624+2016) \(⋮\)4

a) ( 450+108+180) \(⋮\)9

=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9

Nên ( 450+108+180) \(⋮\)9.

b) ( 1350+735+255) \(⋮\)5

=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5

Nên ( 1350+735+255) \(⋮\)5.

c) ( 32624 + 2016) \(⋮\) 4

=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4

Nên ( 32624 + 2016) \(⋮\)4.

Đây là câu trả lời của mình, mình chúc bạn học tốt!

25 tháng 10 2016

uk