Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 810 - 89 - 88 = 88 . ( 82 - 8 - 1 ) = 88 . ( 64 - 8 - 1 ) = 88 . 55
Vì 55 \(⋮\)55
=> 88 . 55\(⋮\)55
=> 810 - 89 - 88\(⋮\)55 ( đpcm )
Vậy bài toán được chứng minh
Ai fan Các Ae Động Nhà Bangtan thì kb nha =))
P/s : BANGTAN BANGTAN BANGBANGTAN !!!
~*~ BTS ~*~ A.R.M.Y ~*~
\(=11^9+11^8+11^7+11^6+11^5+11^4+11^3+11^2+11+1\)
\(=\left(11^4+11^3+11^2+11+1\right)\cdot\left(1+11^5\right)=\left(1+11^5\right)\cdot16105⋮5\)
\(e)\) \(81^7-27^9-9^{13}\)
\(=\)\(\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=\)\(3^{28}-3^{27}-3^{26}\)
\(=\)\(3^{24}\left(3^4-3^3-3^2\right)\)
\(=\)\(3^{24}\left(81-27-9\right)\)
\(=\)\(3^{24}.45⋮45\)
Vậy \(81^7-27^9-9^{13}⋮45\)
\(g)\) \(10^9+10^8+10^7\)
\(=\)\(10^6\left(10^3+10^2+10\right)\)
\(=\)\(10^6\left(1000+100+10\right)\)
\(=\)\(10^6.1110\)
\(=10^6.2.555⋮555\)
Vậy \(10^9+10^8+10^7⋮555\)
Chúc bạn học tốt ~
a) ta có : \(\overline{ab}\)+\(\overline{ba}\) = (10a+b)+(10b+a)= 11a+11b \(⋮\)11
b) tương tự
\(1\)
\(A=11^9+11^8+11^7+...+11+1\)
\(\Rightarrow A=11^9+11^8+11^7+...+11^1+11^0\)
\(\Rightarrow A=\left(...1\right)+\left(...1\right)+\left(...1\right)+...+\left(...1\right)+1\)
\(\Rightarrow A=\left(.....0\right)⋮5\)
\(\text{Vậy }A⋮5\)
\(2\)
\(n^2+n+1=n.n+n.1+1=n\left(n+1\right)+1\)
\(\text{Mà n ( n + 1 ) là hai số liên tiếp nên chúng là số chãn}\)
\(\Rightarrow n\left(n+1\right)+1\text{là số lẻ}\)
\(\Rightarrow\left(n^2+n+1\right)⋮4̸\)
Em học đồng dư chưa?
Nếu học rồi thì có thể làm theo cách này:
a) \(6\equiv1\left(mod5\right)\)
=> \(6^{100}\equiv1^{100}\equiv1\left(mod5\right)\)
=> \(6^{100}-1\equiv1-1\equiv0\left(mod5\right)\)
=> \(6^{100}-1⋮5\)
Câu b, c làm tương tự
Còn nếu chưa học kiến thức đồng dư
a) \(6^{100}\)có chữ số tận cùng là 6
=> \(6^{100}-1\)có chữ số tận cùng là 5
=> \(6^{100}-1\) chia hết cho 5
b) \(21^{20}\) có chữ số tận cùng là 1
\(11^{10}\)có chữ số tận cùng là 1
=> \(21^{20}-11^{10}\) có chữ số tận cùng là 0
=> \(21^{20}-11^{10}\) chia hết cho 2 và 5
c) \(10^{10}-1=100...00-1\)( có 10 chữ số 0)
\(=99..9\)
(có 9 chữ số 9)
=> \(10^{10}-1\) chia hết cho 9
Chứng tỏ rằng :
a) 1+5+52+53+.......+5501 \(⋮\)6
b) 2+22 +23 +.. + 2100 vừa \(⋮\)31, vừa \(⋮\) cho 5
a/ \(1+5+5^2+..........+5^{501}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+............+\left(5^{500}+5^{501}\right)\)
\(=1\left(1+5\right)+5^2\left(1+5\right)+...........+5^{500}\left(1+5\right)\)
\(=1.6+5^2.6+.............+5^{500}.6\)
\(=6\left(1+5^2+..........+5^{500}\right)⋮6\left(đpcm\right)\)
b/ \(2+2^2+2^3+............+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+............+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+............+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+..........+2^{96}.31\)
\(=31\left(2+........+2^{96}\right)⋮31\left(đpcm\right)\)
a)1+5+5^2+5^3+........+5^501
= 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501)
=6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500)
=6+150(5^2+5^3+.......+5^500)
mà 6 chia hết cho 6
150(5^2+5^3+.......+5^500) chia hết cho 6
=> 6+150(5^2+5^3+.......+5^500) chia hết cho 6
=> 6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500) chia hết cho 6
=> 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501) chia hết cho 6
=> 1+5+5^2+5^3+........+5^501 chia hết cho 6
1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.
=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp
- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:
n.( n+1). ( n+2) \(⋮\)2.
- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.
Mà 2 và 3 là hai số nguyên tố cùng nhau.
Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).
2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.
=> 3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22
= 3n. (27+3) + 2n . ( 8+4)
= 6. ( 3n . 5 + 2n . 2)
= 6k với k = 3n . 5 + 2n+1
Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).
3) a) ( 6100 - 1) \(⋮\) 5
b) 2120 - 1110 chia hết cho cả 2 và 5
a) ( 6100 - 1) \(⋮\)5
=> Số 6100 có chữ số tận cùng là 6.
Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)
=> ( 6100 - 1) \(⋮\)5(đpcm).
b) 2120 - 1110 chia hết cho cả 2 và 5.
=> Số 2120 có chữ số tận cùng là 1.
Số 1110 có chữ số tận cùng cũng là 1.
Nên 2120 - 1110 là số có chữ số tận cùng là 0.
=> 2120 - 1110 chia hết cho 2 và 5(đpcm).
4) Chứng minh rằng:
a) ( 450+108+180) \(⋮\)9
b) ( 1350 +735+255) \(⋮\)5
c) ( 32624+2016) \(⋮\)4
a) ( 450+108+180) \(⋮\)9
=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9
Nên ( 450+108+180) \(⋮\)9.
b) ( 1350+735+255) \(⋮\)5
=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5
Nên ( 1350+735+255) \(⋮\)5.
c) ( 32624 + 2016) \(⋮\) 4
=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4
Nên ( 32624 + 2016) \(⋮\)4.
Đây là câu trả lời của mình, mình chúc bạn học tốt!