Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10^9 + 2 = 100....0 + 2 = 100...02.
Tổng các chữ số của số trên là:
1 + 0 + ... + 0 + 2 = 3.
Vậy số trên chia hết cho 3 vì có tổng các chữ số chia hết cho 3 => 10^9 + 2 chia hết cho 3 (đpcm)
Bài kia làm tương tự
a)101234+2)=10+2=12
Vì 12 chia hết cho 3 nên (101234+2)chia hết cho 3
b)(10789+8)=10+8=18
Vì 18 chia hết 9 nên (10799+8) chia hết cho 9
a) Ta có: Tổng các chữ số của 101234 + 2 = 1+0+........+2 = 3 => chia hết chp 3
b) Tương tự câu a, ttổng các chữ số của 10789 + 8 = 1+0+....+8 = 9 => chia hết cho 9
a) Ta có: \(10\equiv1\left(mod3\right)\)=> \(10^{1234}\equiv1\left(mod3\right)\)
=> \(10^{1234}+2\equiv0\left(mod3\right)\)(đpcm)
b) Ta có: \(10\equiv1\left(mod9\right)\)
=> \(10^{780}\equiv1\left(mod9\right)\)
=> \(10^{780}\cdot10^9\equiv10^9\left(mod9\right)\)\(\equiv1\left(mod9\right)\)
=> \(10^{789}\equiv1\left(mod9\right)\)
=> \(10^{789}+9\equiv10\left(mod9\right)\equiv1\left(mod9\right)\)
=> \(10^{789}+9\) không chia hết cho 9.
Chắc cậu viết đề sai mik nghĩ phải là chứng minh \(10^{789}+8\)chia hết cho 9
Lời giải:
$10\equiv 1\pmod 3$
$\Rightarrow 10^9\equiv 1^9\equiv 1\pmod 3$
$\Rightarrow 10^9+2\equiv 1+2\equiv 3\equiv 0\pmod 3$
$\Rightarrow 10^9+2$ chia hết cho $3$.
---------------------
$10\equiv 1\pmod 9$
$\Rightarrow 10^{10}\equiv 1^{10}\equiv 1\pmod 9$
$\Rightarrow 10^{10}-1\equiv 1-1\equiv 0\pmod 9$
$\Rightarrow 10^{10}-1\vdots 9$