K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 6 2024

Lời giải:

$10\equiv 1\pmod 3$

$\Rightarrow 10^9\equiv 1^9\equiv 1\pmod 3$

$\Rightarrow 10^9+2\equiv 1+2\equiv 3\equiv 0\pmod 3$

$\Rightarrow 10^9+2$ chia hết cho $3$.

---------------------

$10\equiv 1\pmod 9$

$\Rightarrow 10^{10}\equiv 1^{10}\equiv 1\pmod 9$

$\Rightarrow 10^{10}-1\equiv 1-1\equiv 0\pmod 9$
$\Rightarrow 10^{10}-1\vdots 9$

2 tháng 11 2017
 

a/ 109 =100000...0 (9 chữ số 0) => 109 +2 = 100000..0002 (8 chữ số 0)

Tổng các chữ số =1+2=3 => 109 +2 chia hết cho 3

b/ 1010 = 100000..000 (10chữ số 0) => 1010 - 1 = 9999...9999 (10 chữ số 9)

Tổng các chữ số là 10x9=90 => chia hết cho 9

c/ và d/ cũng tương tự

 
 
3 tháng 11 2017

10^9 + 2 = 100....0 + 2 = 100...02.

Tổng các chữ số của số trên là:

1 + 0 + ... + 0 + 2 = 3.

Vậy số trên chia hết cho 3 vì có tổng các chữ số chia hết cho 3 => 10^9 + 2 chia hết cho 3 (đpcm)

Bài kia làm tương tự

3 tháng 11 2017

giải đi bạn

25 tháng 11 2019

Ảnh đẹp thì

22 tháng 7 2016

a)101234+2)=10+2=12

Vì 12 chia hết cho 3 nên (101234+2)chia hết cho 3

b)(10789+8)=10+8=18

Vì 18 chia hết 9 nên (10799+8) chia hết cho 9

9 tháng 10 2017

Gíup nha!

9 tháng 10 2017

 bạn nghe cô giáo giảng là dc mà :D

nha bạn :):)))

31 tháng 7 2016

a) Ta có: Tổng các chữ số của 101234 + 2 = 1+0+........+2 = 3 => chia hết chp 3

b) Tương tự câu a, ttổng các chữ số của 10789 + 8 = 1+0+....+8 = 9 => chia hết cho 9

31 tháng 7 2016

 câu a ta có 10 chia 3 dư 1 =>10^1234 chia 3 dư 1 ,mà 2 chia 2 dư 2=>10^1234+2 chia hết cho 3

câu b,ta có 10 chia 9 dư 1=>10^789 chia 9 dư 1 ,mà 8 chia 9 dư 8=>10^789 +8 chia hết cho 9

XONG

13 tháng 7 2016

a) Ta có: \(10\equiv1\left(mod3\right)\)=>   \(10^{1234}\equiv1\left(mod3\right)\)

=>  \(10^{1234}+2\equiv0\left(mod3\right)\)(đpcm)

b) Ta có: \(10\equiv1\left(mod9\right)\)

=> \(10^{780}\equiv1\left(mod9\right)\)

=> \(10^{780}\cdot10^9\equiv10^9\left(mod9\right)\)\(\equiv1\left(mod9\right)\)

=> \(10^{789}\equiv1\left(mod9\right)\)

=> \(10^{789}+9\equiv10\left(mod9\right)\equiv1\left(mod9\right)\)

=> \(10^{789}+9\)  không chia hết cho 9.

Chắc cậu viết đề sai mik nghĩ phải là chứng minh  \(10^{789}+8\)chia hết cho 9