Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{32}\right)+\left(\frac{1}{33}+...+\frac{1}{64}\right)\)
\(=1+\frac{1}{2}+\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16+\frac{1}{64}.32\)
\(=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
\(=1+\frac{1}{2}.6\)
\(=1+3\)
\(=4\)
~~ Bố thí cái li.ke ~~
\(1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\)
\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)(1)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)
\(\Rightarrow2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{10}}\)
Thay A vào (1)
\(\Rightarrow1-\left(1-\frac{1}{2^{10}}\right)\)
\(=1-1+\frac{1}{2^{10}}=\frac{1}{2^{10}}\)
Ta có: 210 < 211
\(\Rightarrow\frac{1}{2^{10}}>\frac{1}{2^{11}}\)(đpcm)
Phần C đề thiếu
\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)
\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)
\(\Rightarrow4D=3-\frac{203}{3^{100}}\)
\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)
1>1/1*2
1/22>1/2*3
1/32>1/3/4
.....................
1/1002>1/100*101
=>1-1/22-...-1/1002>1/1*2-1/2*3-.....-1/100*101=1-1/2-1/2+1/3-1/3+......-1/100+1/101=1/101
vậy 1-1/22-....-1002
study well
k nha
ai k đúng cho mk thì mk trả lại gấp đôi và ngược lại
ai ghé qua nhớ để lại 1 k đúng
ủng hộ mk nha
Ta có :
A= 1+ 1/2 + 1/3 +1/4 + ...+ 1/63 + 1/64
=1 + ( 1/2 + 1/3 + 1/4 ) + ( 1/5 +1/6 + ..+1/8 ) + ( 1/9 + 1/10 + ..+ 1/16 ) + ( 1/17 + 1/18 + ...+ 1/32 ) + ( 1/33 + 1/34 + ...+1/63 + 1/64 )
=> A > 1 + ( 1/2 + 1/4.2 ) + 1/8.4 + 1/16.8 + 1/32.16 + 1/64.32
A > 1 + 1/2 + 1/2 + 1/2 +1/2
=>A > 4
thanks