Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a2+b2-2ab=(a-b)2>=0
b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=> \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)
c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)
2.
\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )
Tương tự.......................
1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)
Lại có: b - a < 0 ( a > b)
ab >0 ( a>0, b > 0)
\(\Rightarrow\dfrac{b-a}{ab}< 0\)
Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)
2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b
3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b
a2+b2+c2=ab+ac+bc
<=>2a2+2b2+2c2=2ab+2ac+2bc
<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0
<=>(a-b)2+(a-c)2+(b-c)2=0
<=>a-b=0 và a-c=0 và b-c=0
<=>a=b=c
Áp dụng Bất Đẳng Thức Co-si ta có:
\(a^3+b^3+b^3\ge3ab^2\)
\(b^3+c^3+c^3\ge3bc^2\)
\(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế của các Bất Đẳng Thức trên ta được:
\(3\left(a^3+b^3+c^3\right)\ge3\left(ab^2+bc^2+ac^2\right)\)
\(\Leftrightarrow a^3+b^3+c^3\ge ab^2+bc^2+ac^2\)
Dấu đẳng thức xảy ra khi và chỉ khi: \(\hept{\begin{cases}a=b\\b=c\Leftrightarrow a=b=c\\c=a\end{cases}}\)
Ta có :
\(\left(a-1\right)^2\ge0\Leftrightarrow a^2-2a+1\ge0\Rightarrow a^2+1\ge2a\)(1)
\(\left(b-1\right)^2\ge0\Leftrightarrow b^2-2b+1\ge0\Rightarrow b^2+1\ge2b\)(2)
\(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\)(3)
Cộng các vế tương ứng của (1);(2);(3) lại ta được :
\(\left(a^2+1\right)+\left(b^2+1\right)+\left(a^2+b^2\right)\ge2a+2b+2ab\)
\(\Leftrightarrow2a^2+2b^2+2\ge2a+2b+2ab\)
\(\Rightarrow a^2+b^2+1\ge ab+a+b\)(đpcm)
Trả lời
a^2 + b^2 - 2ab
= ( a^2 - 2ab + b^2 )
= ( a - b )^2 ≥ 0 ( luôn đúng )
Vậy...
\(a^2+b^2-2ab=\left(a-b\right)^2\ge\forall a,b\)