K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

Bài 2

a) Ta có

S = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

S = \(\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

\(\dfrac{1}{13}< \dfrac{1}{12}\)

\(\dfrac{1}{14}< \dfrac{1}{12}\)

\(\dfrac{1}{15}< \dfrac{1}{12}\)

=> \(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}.3\)

Lại có

\(\dfrac{1}{61}< \dfrac{1}{60}\)

\(\dfrac{1}{62}< \dfrac{1}{60}\)

\(\dfrac{1}{63}< \dfrac{1}{60}\)

=> \(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}.3\)

=> S = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) < \(\dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)

= \(\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\) = \(\dfrac{1}{2}\)

=> đpcm

26 tháng 6 2017

Ta có

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{2015}{2016}\)

\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{2015}{2016}\)

\(\dfrac{1}{1}-\dfrac{1}{x+2}=\dfrac{2015}{2016}\)

\(\dfrac{1}{x+2}=\dfrac{1}{1}-\dfrac{2015}{2016}\)

\(\dfrac{1}{x+2}=\dfrac{1}{2016}\)

2016 = x + 2

x = 2016 - 2

x = 2014

Vậy x = 2014 là giá trị cần tìm

18 tháng 3 2019

              \(1/1.3+1/3.5+1/5.7+...+1/n.(n+2)<2003/2004\)

Ta có :=2/2.(1/1.3+1/3.5+1/5.7+...+1/n.(n+2)

           =1/2.(2/1.3+2/3.5+2/5.7+...+2/n.(n+2)

           =1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/n-1/n+2)

           =1/2.(1-1/n+2)

           =1/2.(n+2/n+2-1/n+2)

           =1/2.(n+2-1/n+2)

           =1/2.n+1/n+2

           =n+1/(n+2).2

       Vì: n+1/(n+2).2<2003/2004

Suy ra:n+1/(n+2).2=x/2004

Suy ra:(n+2).2=2004

            n+2     =1002

            n         =1000

Vậy n bằng 1000

11 tháng 4 2017

mình làm câu 4 nha

Gọi d là ước chung của 2n+1 và 3n+2 (d thuộc N*)

=>(2n+1) : d và (3n+2) : d

=>3.(2n+1) :d và 2.(3n+2): d

=>(6n+3) :d và (6n+4) : d

=> ((6n+4) - (6n+3)) : d

=>1 :d => d=1

Vì d là ước chung của 2n+1/3n+2

mà d =1 => ƯC(2n+1/3n+2) =1

Vậy 2n+1/3n+2 là phân số tối giản

Tick mình nha bạn hiền .

11 tháng 4 2017

câu 5 mình mới nghĩ ra nè ( có gì sai thì bạn sửa lại giúp mình nha)

Ta có : A=\(\dfrac{n+2}{n-5}\)

A=\(\dfrac{n-5+7}{n-5}\)

A=\(\left[\left(n-5\right)+7\right]\) : (n-5)

A= 7 : (n-5)

=> (n-5) thuộc Ư(7)=\(\left\{1;-1;-7;7\right\}\)

Suy ra :

n-5 =1=> n= 6

n-5= -1 =>n=4

n-5=7=>n=12

n-5= -7 =>n= -2

Vậy n = 6 ;4;12;-2

Mấy dấu chia ở câu 4 là dấu chia hết đó nha ( tại mình không biết viết dấu chia hết ).

Tick mình nha bạn hiền.

18 tháng 3 2022

`Answer:`

1. \(S=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}\)

\(\Rightarrow S=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{80}\right)\)

\(\Rightarrow S>\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{80}+...+\frac{1}{80}\right)\)

\(\Rightarrow S>20.\frac{1}{60}+20.\frac{1}{80}\)

\(\Rightarrow S>\frac{1}{3}+\frac{1}{4}\)

\(\Rightarrow S>\frac{7}{12}\)

2. \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}\)

Ta có:

 \(2^2< 1.2\Rightarrow\frac{1}{2^2}< \frac{1}{1.2}\)

\(3^2< 2.3\Rightarrow\frac{1}{3^2}< \frac{1}{2.3}\)

\(4^2< 3.4\Rightarrow\frac{1}{4^2}< \frac{1}{3.4}\)

...

\(2009^2< 2008.2009\Rightarrow\frac{1}{2009^2}< \frac{1}{2008.2009}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(\Rightarrow S< 1-\frac{1}{2009}< 1\)

\(\Rightarrow S< 1\)

3. \(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)

\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)

\(=\frac{1}{5}-\frac{1}{200}\)

\(=\frac{39}{200}\)

26 tháng 6 2016

S = 1/11 + 1/12 + 1/13 + 1/14 + ... + 1/20

S > 1/20 + 1/20 + 1/20 + 1/20 + ... + 1/20

               10 phân số 1/20

S > 10 × 1/20

S > 1/2

Bài 1: Cho A= \(\frac{2011}{2012}\)+ \(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)Hãy so sánh S và \(\frac{1}{2}\)Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)Bài 4: Cho tổng...
Đọc tiếp

Bài 1: Cho A= \(\frac{2011}{2012}\)\(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)

Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)

Hãy so sánh S và \(\frac{1}{2}\)

Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)

S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)

Bài 4: Cho tổng A= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)

Chứng tỏ rằng A>1

Bài 5: Chứng tỏ rằng với n thuộc N, n khác 0 thì:

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Bài 6: Chứng tỏ rằng

D= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)<1

Bài 7: 

C= \(\frac{1}{2}\frac{1}{14}\frac{1}{35}\frac{1}{65}\frac{1}{104}\frac{1}{152}\)

Các bạn giúp mình nha. Các bạn giải thích cho mình với. Mình không biết làm

4
10 tháng 6 2016

sorry,quá dài

10 tháng 6 2016

Đề bài 7 có sai gì không bạn?

9 tháng 3 2017

ta thấy: 1/11;1/12;1/13;...;1/19;1/20 đều >1/20

=>1/11+1/12+...1/19+1/20>1/20+1/20...+1/20

1/11+1/12+...1/19+1/20>10/20

1/11+1/12+...1/19+1/20>1/2 vậy S>1/2