Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
a) Ta có
S = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
S = \(\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Vì \(\dfrac{1}{13}< \dfrac{1}{12}\)
\(\dfrac{1}{14}< \dfrac{1}{12}\)
\(\dfrac{1}{15}< \dfrac{1}{12}\)
=> \(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}.3\)
Lại có
\(\dfrac{1}{61}< \dfrac{1}{60}\)
\(\dfrac{1}{62}< \dfrac{1}{60}\)
\(\dfrac{1}{63}< \dfrac{1}{60}\)
=> \(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}.3\)
=> S = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) < \(\dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)
= \(\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\) = \(\dfrac{1}{2}\)
=> đpcm
Ta có
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{2015}{2016}\)
\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{2015}{2016}\)
\(\dfrac{1}{1}-\dfrac{1}{x+2}=\dfrac{2015}{2016}\)
\(\dfrac{1}{x+2}=\dfrac{1}{1}-\dfrac{2015}{2016}\)
\(\dfrac{1}{x+2}=\dfrac{1}{2016}\)
2016 = x + 2
x = 2016 - 2
x = 2014
Vậy x = 2014 là giá trị cần tìm
\(1/1.3+1/3.5+1/5.7+...+1/n.(n+2)<2003/2004\)
Ta có :=2/2.(1/1.3+1/3.5+1/5.7+...+1/n.(n+2)
=1/2.(2/1.3+2/3.5+2/5.7+...+2/n.(n+2)
=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/n-1/n+2)
=1/2.(1-1/n+2)
=1/2.(n+2/n+2-1/n+2)
=1/2.(n+2-1/n+2)
=1/2.n+1/n+2
=n+1/(n+2).2
Vì: n+1/(n+2).2<2003/2004
Suy ra:n+1/(n+2).2=x/2004
Suy ra:(n+2).2=2004
n+2 =1002
n =1000
Vậy n bằng 1000
mình làm câu 4 nha
Gọi d là ước chung của 2n+1 và 3n+2 (d thuộc N*)
=>(2n+1) : d và (3n+2) : d
=>3.(2n+1) :d và 2.(3n+2): d
=>(6n+3) :d và (6n+4) : d
=> ((6n+4) - (6n+3)) : d
=>1 :d => d=1
Vì d là ước chung của 2n+1/3n+2
mà d =1 => ƯC(2n+1/3n+2) =1
Vậy 2n+1/3n+2 là phân số tối giản
Tick mình nha bạn hiền .
câu 5 mình mới nghĩ ra nè ( có gì sai thì bạn sửa lại giúp mình nha)
Ta có : A=\(\dfrac{n+2}{n-5}\)
A=\(\dfrac{n-5+7}{n-5}\)
A=\(\left[\left(n-5\right)+7\right]\) : (n-5)
A= 7 : (n-5)
=> (n-5) thuộc Ư(7)=\(\left\{1;-1;-7;7\right\}\)
Suy ra :
n-5 =1=> n= 6
n-5= -1 =>n=4
n-5=7=>n=12
n-5= -7 =>n= -2
Vậy n = 6 ;4;12;-2
Mấy dấu chia ở câu 4 là dấu chia hết đó nha ( tại mình không biết viết dấu chia hết ).
Tick mình nha bạn hiền.
`Answer:`
1. \(S=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}\)
\(\Rightarrow S=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{80}\right)\)
\(\Rightarrow S>\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{80}+...+\frac{1}{80}\right)\)
\(\Rightarrow S>20.\frac{1}{60}+20.\frac{1}{80}\)
\(\Rightarrow S>\frac{1}{3}+\frac{1}{4}\)
\(\Rightarrow S>\frac{7}{12}\)
2. \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}\)
Ta có:
\(2^2< 1.2\Rightarrow\frac{1}{2^2}< \frac{1}{1.2}\)
\(3^2< 2.3\Rightarrow\frac{1}{3^2}< \frac{1}{2.3}\)
\(4^2< 3.4\Rightarrow\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(2009^2< 2008.2009\Rightarrow\frac{1}{2009^2}< \frac{1}{2008.2009}\)
\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}\)
\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(\Rightarrow S< 1-\frac{1}{2009}< 1\)
\(\Rightarrow S< 1\)
3. \(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)
\(=\frac{1}{5}-\frac{1}{200}\)
\(=\frac{39}{200}\)
S = 1/11 + 1/12 + 1/13 + 1/14 + ... + 1/20
S > 1/20 + 1/20 + 1/20 + 1/20 + ... + 1/20
10 phân số 1/20
S > 10 × 1/20
S > 1/2
ta thấy: 1/11;1/12;1/13;...;1/19;1/20 đều >1/20
=>1/11+1/12+...1/19+1/20>1/20+1/20...+1/20
1/11+1/12+...1/19+1/20>10/20
1/11+1/12+...1/19+1/20>1/2 vậy S>1/2