Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31=>chia hết cho 31
b)1+7+72+73+...+7101= (1+7)+(72+73)+...+(7100+7101)= 1(1+7) + 72.(1+7) +......+ 7100.(1+7)= 1.8 + 72.8 +........+ 7100.8= 8.(1+72+...+7100) =>chia hết cho 8
c)439+440+441=438.4+438.42+438.43=438.(4+16+64)=438.84=> chia hết cho 28
a)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31=>chia hết cho 31
b)1+7+72+73+...+7101= (1+7)+(72+73)+...+(7100+7101)= 1(1+7) + 72.(1+7) +......+ 7100.(1+7)= 1.8 + 72.8 +........+ 7100.8= 8.(1+72+...+7100) =>chia hết cho 8
c)439+440+441=438.4+438.42+438.43=438.(4+16+64)=438.84=> chia hết cho 28
ko biết nữa nhưng hình như đề bài bạn bị sai thì phải tính hoài ko ra
\(\left(a\right)5^{2003}+5^{2002}+5^{2001}=5^{2001}\left(5^2+5+1\right)=5^{2001}\left(25+5+1\right)=5^{2001}.31\)
Luôn luôn chia hết cho 31
a)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31=>chia hết cho 31
b)1+7+72+73+...+7101= (1+7)+(72+73)+...+(7100+7101)= 1(1+7) + 72.(1+7) +......+ 7100.(1+7)= 1.8 + 72.8 +........+ 7100.8= 8.(1+72+...+7100) =>chia hết cho 8
c)439+440+441=438.4+438.42+438.43=438.(4+16+64)=438.84=> chia hết cho 28
cái này mới đúng
Ta có:
52003 + 52002 + 52001
= 52001.52 + 52001.5 + 52001
= 52001.(52 + 5 + 1)
= 52001.31
Vì 31 chia hết cho 31 => 52001.31 chia hết cho 31 => 52003 + 52002 + 52001 chia hết cho 31
\(5^{2001}+5^{2002}+5^{2003}\)
\(=5^{2001}.\left(1+5+5^2\right)\)
\(=5^{2001}.31⋮31\)
\(\Rightarrow5^{2001}+5^{2002}+5^{2003}⋮31\left(đpcm\right)\)
\(a.\)\(5^{2003}+5^{2002}+5^{2001}\)
\(=5^{2001}.\left(1+5+5^2\right)\)
\(=5^{2001}.31\)
\(\Rightarrow5^{2003}+5^{2002}+5^{2001}⋮31\)
\(b.\)
\(1+7+7^2+7^3+......+7^{101}\)
\(=8+7^2.\left(1+7\right)+7^4.\left(1+7\right)+....+7^{100}.\left(1+7\right)\)
\(=8+7^2.8+7^4.8+.....+7^{100}.8\)
\(=8+8.\left(7^2+7^4+...+7^{100}\right)\)
Ta thấy cả hai số hạng đều chia hết cho 8
\(\Rightarrow1+7+7^2+7^3+......+7^{101}⋮8\)
a) Ta có :
\(5^{2003}+5^{2002}+5^{2001}\)
\(=5^{2001}\times5^2+5^{2001}\times5+5^{2001}\)
\(=5^{2001}\times\left(5^2+5+1\right)\)
\(=5^{2001}\times31\)
Vậy \(5^{2003}+5^{2002}+5^{2001}⋮31\)
b) Ta có :
\(4^{39}+4^{40}+4^{41}\)
\(=4^{39}+4^{39}\times4+4^{39}\times4^2\)
\(=4^{39}\times\left(1+4+4^2\right)\)
\(=4^{39}\times21\)
Vậy \(4^{39}+4^{40}+4^{41}⋮21\)
_Chúc bạn học tốt_