Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{a}{b}< \frac{c}{d}=>\frac{ad}{bd}< \frac{bc}{bd}=>ad< bc\left(đpcm\right)\)
\(b,ad< bc=>\frac{ad}{bd}< \frac{bc}{bd}=>\frac{a}{b}< \frac{c}{d}\left(đpcm\right)\)
a. Nếu : \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}\times bd< \frac{c}{d}\times bd\left(\text{ do }bd>0\right)\)
\(\Leftrightarrow ad< bc\) vậy ta có điều phải chứng minh
b. nếu \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\) vậy ta có đpcm
Giả sử : \(\frac{a}{b}=\frac{c}{d}\) thì ad = bc
Suy ra : ad < bc thì \(\frac{a}{b}< \frac{c}{d}\) (đpcm)
a)
Có \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\) (vì bd > 0)
Vậy \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (với b, d > 0)
b)
Có ad < bc và bd > 0
\(\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)
Vậy \(ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\) (với b, d > 0)
Ta có : \(\frac{a}{b}=\frac{ad}{bd},\frac{c}{d}=\frac{bc}{bd}\)
a, Mẫu chung bd > 0 do b > 0 , d > 0 nên nếu \(\frac{ad}{bd}< \frac{bc}{bd}\)thì ad < bc
b, Ngược lại, nếu ad < bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\). Suy ra \(\frac{a}{b}< \frac{c}{d}\)
Ta có thể viết : \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
\(\Rightarrow ab+ad< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )
Lại có : ad < bc
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)