K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2016

dể đa thức x^2 +2x +2 có nghiệm nên suy ra x thuộc ước của 2

thay x lần lượt suy ra pt vô nghiệm

2 tháng 4 2016

Bài này bn phải phân tích ra đưa về dạng 1 hằng đẳng thức(=(x+1)2) rồi suy ra vô nghiệm, ko nên giải theo cách khác

13 tháng 4 2016

Ta có: x^2 >= 0 với mọi x

          2*x >= 0 với mioj x

       => x^2 + 2*x +2 >= 2 với mọi x

       => x^2 + 2*x + 2 không có nghiệm

13 tháng 4 2016

ta có : x2 lớn hơn hoặc bằng 0. với mọi x

        suy ra x2 +2x +2 lớn hơn 0. với mọi x

         suy ra x^2 +2x+2 k có ngiệm

10 tháng 4 2015

Do x^2+2x>0,mà x^2+2x+2>2=> x^2+2x+2 không có nghiệm

22 tháng 4 2017

Cho đa thức: \(x^2+2x+2=0\)

\(=x^2+x+x+2=0\)

\(=x\left(x+1\right)+1\left(x+1\right)-1+2=0\)

\(=x\left(x+1\right)+1\left(x+1\right)+1=0\)

\(=\left(x+1\right).\left(x+1\right)=-1\)

\(\left(x+1\right)^2=-1\)(Vô lí)

\(\Rightarrow x^2+2x+2\) vô nghiệm

23 tháng 4 2018

x^2+2x+3 = (x^2+2x+1) + 2 = (x+1)^2 +2

Mà (x+1)^2 \(\ge\)0

=> (x+1)^2 +2 \(\ge\)0 + 2 = 2 > 0 

Suy ra đa thức vô nghiệm

ta có:x2>0 với mọi x; 2x > 0 với mọi x; 3 >0

=> x2 + 2x + 3 > 0

=> đa thức trên ko có nghiệm

Chúc bn hok tốt!!!^^

26 tháng 4 2018

\(x^2+2x+3=\left(x^2+2x.1+1^2\right)+2=\left(x+1\right)^2+2\ge2\)  > 0 với mọi x

Vậy đa thức f(x) không có nghiệm

26 tháng 4 2018

Giả sử đa thức f(x) có nghiệm, hay tồn tại nghiệm x sao cho x2 + 2x + 3 = 0.

\(\Rightarrow x^2+2x+1+2=0\)

\(\Rightarrow x^2+x+x+1+2=0\)

\(\Rightarrow x\left(x+1\right)+\left(x+1\right)+2=0\)

\(\Rightarrow\left(x+1\right)\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2+2=0\)

\(\left(x+1\right)^2\ge0\text{ với mọi }x\Rightarrow\left(x+1\right)^2+2\ge2\left(\text{vô lý}\right)\)

\(\Rightarrow\text{không tồn tại nghiệm của }f\left(x\right)=x^2+2x+3\)

13 tháng 5 2018

Vì \(H\left(x\right)=2x^2+1\ge1>0\)

Nên đa thức trên vô nghiệm 

13 tháng 5 2018

\(2x^2+1\ge1\forall x\)

Vậy đa thức H(x) vô nghiệm 

15 tháng 4 2018

\(2x^2+2x+3\)

\(=2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}\)

\(=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\)

Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}>0\forall x\)

Vậy đa thức trên vô nghiệm

15 tháng 4 2018

Giải chi tiết hơn đc ko ạ

14 tháng 4 2016

a) P (x) = 3x-12 = 0

3x = 0+12

3x=12

x = 4

vay nghiem cua da thuc P (x) = 4

b) xet : x^2 > 0 => 2x^2>0

vay da thuc Q(x) khong co nghiem

14 tháng 4 2016

a/ nghiệm cua đa thức p(x) tại giá trị P(x)=0

P(X)=3x-12=0

vậy x=4

b/Q(x)=2x^2+1

vì 2x^2>hoặc =0 suy ra 2x^2+1>hoặc =1 khác 0

vậy đa thức Q(x) không có nghiện

BẠN THẤY ĐÚNG THÌ K CHO MÌNH NHÉ.... BẠN XEM LẠI ĐỀ CÂU C RỒI MÌNH GIẢI CHO

TA CÓ

\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)

\(=1-2+1=0\)

vậy ......

TA CÓ

\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)

vậy..............

4 tháng 4 2019

Thay \(x=\frac{1}{2}\)vào P (x) ta có:

\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)

\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)

\(P\left(\frac{1}{2}\right)=1-2+1\)

\(P\left(\frac{1}{2}\right)=0\)

Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)