K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

Ta có 3n và 3n+1 nguyên tố cùng nhau (vì 3n và 3n+1 là hai số tự nhiên liên tiếp)

=> 3n và 3n+1 chỉ cùng chia hết cho 1

=>\(\frac{3n}{3n+1}\)là phân số tối giản.

14 tháng 3 2020

Ta có : \(\frac{3n}{3n+1}\) với \(n\inℕ\)

Mà 3n và 3n+1 là 2 số tự nhiên liên tiếp

Vì 2 số tự nhiên liên tiếp có ƯCLN là 1

\(\Rightarrow\)ƯCLN(3n, 3n+1)=1 nên phân số \(\frac{3n}{3n+1}\)tối giản(đpcm)

Bạn cũng có chứng minh bằng cách tìm ƯCLN(3n,3n+1)=1 nhé!

20 tháng 4 2020

Gọi d là ƯCLN (3n;3n+1) ( d thuộc N*)

=> 3a+1-3a chia hết chi d

=> 1 chia hết cho d

mà d thuộc N* => d=1

=> \(\frac{3n}{3n+1}\)là phân số tối giản

26 tháng 2 2021

3n và 3n +1 là 2 số TN liên tiếp nên ƯCLN(3n, 3n+1)=1------>3n/3n+1 là phân số tối giản

27 tháng 7 2015

Ta có 3n; 3n + 1 là 2 số tự nhiên liên tiếp

\(\Rightarrow\) 3n; 3n + 1 là 2 số nguyên tố cùng nhau

\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản

22 tháng 3 2018

Gọi \(ƯCLN\left(3n+1;3n+4\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n+1⋮d\\3n+4⋮d\end{cases}}\)

\(\Rightarrow\)\(\left(3n+1\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow\)\(\left(-3\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(-3\right)=\left\{1;-1;3;-3\right\}\)

Lại có : 

\(3n⋮3\)\(;\)\(3n⋮\left(-3\right)\)

\(\Rightarrow\)\(3n+1\) không chia hết cho \(3\) và \(-3\)

\(\Rightarrow\)\(ƯCLN\left(3n+1;3n+4\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n+1}{3n+4}\) là phân số tối giản với mọi \(n\inℕ\)

Chúc bạn học tốt ~ 

22 tháng 3 2018

ban oi ban co sai de ko


 

3 tháng 7 2016

GỌI ƯCLN(3n;3n+1)=d

=>3n chia hết cho d; 3n+1chia hết cho d

=>3n+1-3n=1chia hết cho d=> d=1

=> 3n/3n+1 là phân số tối giản

3 tháng 7 2016

Gọi ƯCLN 3n;3n+1 là d

=> 3n chia hết cho d;3n+1 chia hết cho d

=> 1chia hết cho d=> d=1

=> 3n và 3n+1 là ntố cùng nhau

=> phân số tối giản 

14 tháng 8 2017

3n và 3n+1 là 2 số nguyên liên tiếp nên phân số 3n/3n+1 là ps tối giản

15 tháng 2 2019

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N