K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

 Gọi (14n+3,21n+4)=d (d thuộc N) 
=>14n+3,21n+4 chia hết cho d 
=>3(14n+3)-2(21n+4)=1 chia hết cho d 
=>d=1 
Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau với mọi số tự nhiên n

31 tháng 10 2017

mk ko bik

25 tháng 11 2023

Nài nay khó quá giúp mk với

a: Gọi d=ƯCLN(6n+5;2n+1)

=>6n+5-3(2n+1) chia hết cho d

=>2 chia hết cho d

mà 2n+1 lẻ

nên d=1

=>ĐPCM

b: Gọi d=ƯCLN(14n+3;21n+4)

=>42n+9-42n-8 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

d: Gọi d=ƯCLN(3n+7;n+2)

=>3n+7 chia hết cho d và n+2 chia hết cho d

=>3n+7-3n-6 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

25 tháng 12 2024

a: Gọi d=ƯCLN(6n+5;2n+1)

=>6n+5-3(2n+1) chia hết cho d

=>2 chia hết cho d

mà 2n+1 lẻ

nên d=1

=>ĐPCM

b: Gọi d=ƯCLN(14n+3;21n+4)

=>42n+9-42n-8 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

d: Gọi d=ƯCLN(3n+7;n+2)

=>3n+7 chia hết cho d và n+2 chia hết cho d

=>3n+7-3n-6 chia hết cho d

=>1 chia hết cho d

=>d=1

câu trả lời nhé bn

5 tháng 6 2020

Muốn chứng minh hai số là hai số nguyên tố cùng nhau, ta sẽ chứng minh chúng có ƯCLN = 1

Gọi d là ƯC(21n + 4 ; 14n + 3)

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}\)

=> ( 42n + 8 ) - ( 42n + 9 ) chia hết cho d

=> 42n + 8 - 42n - 9 chia hết cho d

=> ( 42n - 42n ) + ( 8 - 9 ) chia hết cho d

=> 0 + ( -1 ) chia hết cho d

=> -1 chia hết cho d

=> d = 1 hoặc d = -1

=> ƯCLN(21n + 4 ; 14n + 3) = 1

=> đpcm 

28 tháng 10 2015

Gọi (14n+3,21n+4)=d (d thuộc N) 
=>14n+3,21n+4 chia hết cho d 
=>3(14n+3)-2(21n+4)=1 chia hết cho d 
=>d=1 
Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau với mọi số tự nhiên n

9 tháng 11 2019

Gọi \(ƯCLN\left(21n+4;14n+3\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}\)

\(\Rightarrow42n+9-\left(42n+8\right)⋮d\)

\(\Rightarrow1⋮d.\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\)

do \(d\inℕ^∗\Rightarrow d=1\)

Vậy \(ƯCLN\left(21n+4;14n+3\right)=1\)hay \(21n+4\)và \(14n+3\)nguyên tố cùng nhau