Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
một cửa hàng có 1 bao đường nặng 42kg. Ngày thứ nhất bán 2/7 bao đường. Ngày thứ hai bán 3/5 số đường còn lại. Hỏi sau hai ngày bán cửa hàng còn lai bao nhiêu kg đường
giải hộ mình nha
2003^1 tận cùng là 3
2003^2 ....................9
2003^3 ....................7
2003^4 ....................1 (vì 9^2 = 81)
2003^5 ....................3
Vậy 2003^(4k+m) và 2003^m có chữ số tận cùng giống nhau (m, k là stn)
---> 2003^2003 = 2003^(4.500 + 3) tận cùng là 7 (*)
Tương tự :
1997^1 tận cùng là 7
1997^2 ....................9
1997^3 ....................3
1997^4 ....................1
---> 1997^1997 = 1997^(499.4 + 1) tận cùng là 7 (**)
(*),(**) ---> 2003^2003 - 1997^1997 tận cùng là 0, tức là bội của 10
---> 0,3 (2003^2003 - 1997^1997) là số tự nhiên.
=0,3.(2003^2000.2003^3-1997^1996.1997)
=0,3.[2003^4.500.(....7)-1997^4.499.(.....7)]
=0,3.[(....1).(....7)-(....1).(.....7)
=0,3.[(....7)-(.....7)]
=0,3.(.....0)
=......3
19831983 = (19834)495.19833 = (...1)495.(...7) = (...1).(...7) = (...7)
19171917 = (19174)479.1917 = (....1)479.1917 = (....1).1917 = (...7)
=> 19831983 - 19171917 = (...7) - (..7) = (....0) nên 19831983 - 19171917 chia hết cho 10
=> 0,3.(19831983 - 19171917) = 3.(19831983 - 19171917): 10 là số tự nhiên
Ta có:19831983+19171917
=*31983+*71917=(*32)991.*3+(*72)958.*7
=*1991.*3+*1958.*7
=*1.*3+*1.*7
=*3+*7
=*0
=>19831983+19171917 có tận cùng là 0
=>19831983+19171917 chia hết cho 10
=>19831983+19171917=10k(k thuộc N)
=>0,7.19831983+19171917=0,7.10.k=7.k là số tự nhiên
=>ĐPCM
19831983 = (19834)495.19833 = (...1)495.(...7) = (...1).(...7) = (...7)
19171917 = (19174)479.1917 = (....1)479.1917 = (....1).1917 = (...7)
=> 19831983 - 19171917 = (...7) - (..7) = (....0) nên 19831983 - 19171917 chia hết cho 10
=> 0,3.(19831983 - 19171917) = 3.(19831983 - 19171917): 10 là số tự nhiên
\(0,3\left(2003^{2003}-1997^{1997}\right)=\frac{3.\left(2003^{2003}-1997^{1997}\right)}{10}\)
\(2003^4=1\left(mod1\right)\Rightarrow\left(2003^4\right)^{500}.2003^3=1.2003^3=2003^3=7\left(mod10\right)\)
=>20032003 tận cùng = 7
\(1997^4=1\left(mod10\right)\Rightarrow\left(1997^4\right)^{499}.1997=1.1997=1997=7\left(mod10\right)\)
=>19971997 tận cùng = 7
do đó 20032003-19971997 tận cùng = 0 nên nó chia hết cho 10
Hay \(0,3\left(2003^{2003}-1997^{1997}\right)\) là một số tự nhiên