Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29
= (2 + 22 + 23) + (24 +25 + 26) +(27 + 28 + 29)
= (2 + 22 + 23) + 23(2 + 22 + 23) + 26(2 + 22 + 23)
= 14 + 23.14 + 26.14
= 14(1 + 23 + 26) chia hết cho 7 (ĐPCM)
\(A=\left(2+2^2+2^3+2^4+2^5\right)+\)\(\left(2^6+2^7+2^8+2^9+2^{10}\right)+....\left(2^{86}+2^{87}+2^{88}+2^{89}+2^{90}\right)\)
\(A=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)\(+....+2^{86}.\left(1+2+2^2+2^3+2^4\right)\)
\(A=2.21+2^6.21+...+2^{86}.21\)
\(A=21.\left(2+2^6+...+2^{86}\right)⋮21\)
S=(1+2)+(22+23)+.....+(26+27)
S= 3 +22(1+2)+....+26(1+2)
S= 3 +22.3+.....+26.3
S= 3(1+22+.....+26)chia hết cho 3
Tick mình đầu tiên nha
chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+4)(n+5) chia hết cho 2
giúp mik nha
nhớ lập luận nha
Nếu n lẻ
Thì n+5 là chẵn nên tích trên là chẵn
Nếu n chẵn , tích trên cũng là chẵn
Cả 2 trường hợp đều ÷ hếtcho2o
A=2+2^2+2^3+2^4+...+2^100
=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^99+2^100)
=6+(2^2.2+2^2.2^2)+(2^4.2+2^4.2^2)+...+(2^98.2+2^98.2^2)
=6+2^2.(2+2^2)+2^4(2+2^2)+...+2^98.(2+2^2)
=6.1.2^2.6+2^4.6+...+2^98.6
=6.(2^2+2^4+...+2^98)
Vì \(6⋮6\)
\(\Rightarrow\)\(6.\left(2^2+2^4+...+2^{98}\right)⋮6\)
Hay \(A⋮6\)