K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

vì tập hợp n có vô hạn phần tử mà sau dấu ,là các số thuộc tập hợp N nên đó là số vô tỉ

26 tháng 7 2019

Giả sử, a không phải là 1 số vô tỉ. Khi đó a là một số thập phân vô hạn tuần hoàn mà chu kì có n chữ số, số các chữ số đứng trước chu kì bằng k. Xét số N = 10^m với m là 1 số tự nhiên và \(m\ge n+k\). Trong số a, sau dấu phẩy, ta viết kế tiếp nhau các số tự nhiên kể từ 1, do đó số N cũng được viết ở một vị trí nào đó. Vì a là số thập phân vô hạn tuần hoàn và vì m là chữ số 0 đứng cạnh nhau ở vị trí nào đó trong số a \(\left(m\ge n+k\right)\)nên chu kì của số thập phân này chỉ gồm toàn chữ số 0, nghĩa là a là số thập phân hữu hạn. Điều này mâu thuẫn với đề bài. Vì vậy số a không thể là một số thập phân vô hạn tuần hoàn. Nó là một số thập phân vô hạn không tuần hoàn nghĩa là a là một số vô tỉ.

26 tháng 7 2019

#)Giải :

Giả sử a là số vô tỉ với chu kì = k

Xét A = 10m với m là số tự nhiên 

Vì số a sau dấu phẩy là các số tự nhiên liên tiếp viết từ 1

=> Số A cũng sẽ nằm ở một vị trí nào đó

Vì a là lũy thừa của 10m hay m số 0 

=> a là số hữu hạn (mâu thuẫn với đề bài)

=> a là số thập phân vô hạn không tuần hoàn hay số vô tỉ (đpcm)

24 tháng 1 2017

Mình học lớp 5 mình trả lời không biết có đúng ko nếu đúng thì tớ thực sự giỏi.

Tại vì số thập phân a là số tự nhiên được viết từ 1 đến vân vân mà số tự nhiên thì có vô vàn số nên số thập phân a là số vô tỉ

Xin lỗi làm phiền , tui biết làm ròi

Tí gửi lời giải lên sau

^-^

Có 1980=2^2.3^2.5.11

Vì 2 chữ số tận cùng của A là 80 chia hết cho 4và 5

⇒A chia hết cho 4 và 5

Tổng các số hàng lẻ : 1+(2+3+...+7).10+8=279

Tổng các số hàng chẵn : 9+(0+1+...+9).6+0=279

Có 279+279=558⋮9⇒A⋮9

      279−279=0⋮11⇒A⋮11

⇒ ĐPCM

12 tháng 9 2017

1 tháng 8 2018

a ) gọi 3 số tự nhiên liên tiếp là a  ; a + 1 , a + 2 ( a thuộc N )

ta có : a + ( a +1 ) + ( a + 2 ) = 3a + 3 = 3 . ( a + 1 ) chia hết cho 3 .

vậy tổng của 3 số tự nhiên liên tiếp chia hết cho 3 .

câu b thì mk ko biết !

25 tháng 7 2019

giả sử \(\sqrt{a}\) là số hữu tỉ

\(\sqrt{a}=\frac{m}{n}\) (m, n thuộc N*); (m,n) = 1

do a không phải scp nên \(\frac{m}{n}\)không phải stn 

do đó n > 1

ta có: m2 = a.n2

gọi p là ước nguyên tố nào đó của n

thì m2 chia hết cho p, do đó m chia hết cho p

như vậy p là ước số nguyên tố của m, n, trái với (m, n) = 1

=> \(\sqrt{a}\)là số vô tỉ

6 tháng 3 2020

Trả lời:

+ Giả sử \(\sqrt{a}\notin I\)

\(\Rightarrow\sqrt{a}\inℚ\)

\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)

+ Vì a không là số chính phương

\(\Rightarrow\sqrt{a}\notinℕ\)

\(\Rightarrow\frac{m}{n}\notinℕ\)

\(\Rightarrow n>1\)

+ Vì \(\sqrt{a}=\frac{m}{n}\)

\(\Rightarrow a=\frac{m^2}{n^2}\)

\(\Rightarrow m^2=an^2\)

+ Vì \(n>1\)

\(\Rightarrow\)Giả sử n có ước nguyên tố là p

\(n\inℕ\)

\(m^2=an^2\)

\(\Rightarrow m⋮p\)

\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)

\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai

\(\Rightarrow\sqrt{a}\in I\)

Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.

Hok tốt!

Good girl

4 tháng 12 2014

Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k.

Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ.
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2.
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn)

Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.

6 tháng 3 2020

Trả lời:

+ Giả sử \(\sqrt{a}\notin I\)

\(\Rightarrow\sqrt{a}\inℚ\)

\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)

+ Vì a không là số chính phương

\(\Rightarrow\sqrt{a}\notinℕ\)

\(\Rightarrow\frac{m}{n}\notinℕ\)

\(\Rightarrow n>1\)

+ Vì \(\sqrt{a}=\frac{m}{n}\)

\(\Rightarrow a=\frac{m^2}{n^2}\)

\(\Rightarrow m^2=an^2\)

+ Vì \(n>1\)

\(\Rightarrow\)Giả sử n có ước nguyên tố là p

\(n\inℕ\)

\(m^2=an^2\)

\(\Rightarrow m⋮p\)

\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)

\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai

\(\Rightarrow\sqrt{a}\in I\)

Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.

Hok tốt!

Good girl