Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)
\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)
\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)
\(3^{n+2}+3^n=3^n.3^2+3^n=3^n.9+3^n=3^n\left(9+1\right)=10.3^n⋮10\)
Xét n lẻ => 7n chia 4 dư 3.
=> 7n + 1 chia hết cho 4.
=> (7n + 1)(7n + 2)(7n + 3) chia hết cho 4 (n thuộc N lẻ) (1)
Xét n chẵn => 7n chia 4 dư 1.
=> 7n + 3 chia hết cho 4.
=> (7n + 1)(7n + 2)(7n + 3) chia hết cho 4 (n thuộc N chẵn) (2)
Từ (1) và (2)
=> (7n + 1)(7n + 2)(7n + 3) chia hết cho 4 với mọi n thuộc N (đpcm)
Chứng minh bằng quy nạp:
+) Với n = 1 đúng
+) Giả sử bài toán đúng với n = k, tức là: (7k+1).(7k+2) chia hết cho 3, hay: 72k+3.7k+2 chia hết cho 3, suy ra 72k+2 chia hết cho 3.
+) Cần chứng minh bài toán đúng với n = k + 1.
Thật vậy: với n = k + 1 ta có:
(7k+1+1).(7k+1+2)=72(k+1)+3.7k+1+2
Từ giả thiết quy nạp ta suy ra 72(k+1)+2 chia hết cho 3
Vậy bài toán luôn đúng với n = k + 1
Vậy bài toán được chứng minh
7 chia 3 dư 1, nên 7*n chia 3 dư 1,do đó 7*n +2 chia hết cho 3
Giả sử n2+5n+5 chia hết cho 25
=> n2+5n+5 chia hết cho 5
=> n2 chia hết cho 5 (vì 5n+5 chia hết cho 5)
Mà 5 là số nguyên tố
=> n chia hết cho 5
=> n = 5k (k thuộc N)
Ta có: n2 + 5n + 5 = (5k)2 + 5.5k + 5 = 25k2 + 25k + 5
Vì 25k2 + 25k chia hết cho 25, 5 không chia hết cho 25
=> 25k2 + 25k + 5 không chia hết cho 25 hay n2 + 5n + 5 không chia hết cho 25
=> giả sử sai
Vậy...
\(7^{n+4}-7^n\)
\(\Rightarrow7^n\cdot7^4-7^n\)
\(\Rightarrow7^n\cdot\left(7^4-1\right)\)
\(\Rightarrow7^n\cdot\left(2401-1\right)\)
\(\Rightarrow7^n\cdot2400\)
\(\Rightarrow7^n\cdot30\cdot80⋮30\left(đpcm\right)\)
\(3^{n+2}+3^n\)
\(\Rightarrow3^n\cdot3^2+3^n\)
\(\Rightarrow3^n\cdot\left(3^2+1\right)\)
\(\Rightarrow3^n\cdot\left(9+1\right)\)
\(\Rightarrow3^n\cdot10⋮10\left(đpcm\right)\)