K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2023

Đề sai, vì khi n = 7 thì 2n + 1 = 15 và n + 2 = 9; không phải là hai số nguyên tố cùng nhau

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

22 tháng 6 2016

Đặt d ϵ Ư( 2n+1; 2n+3) ĐK: d ϵ N*

=> 2n+1 chia hết cho d, 2n+3 chia hết cho d

=> (2n+3)-(2n+1) chia hết cho d

=> 2 chia hết cho d => d ϵ Ư(2) => d ϵ {1;2} (vì d ϵ N*)

Mặt khác, d là ước của 2 số lẻ 2n+1 và 2n+3 nên d=1.

=> Ư(2n+1; 2n+3)=1

Vậy 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.

  

 

4 tháng 12 2016

Gọi d là ƯCLN(2n+1, 3n+2)

Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d

=> 2(3n+2) - 3(2n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau

2 tháng 12 2017

Ta có 2n+1 =6n+3

3n+2=6n+4

gọi d là ước của 6n+3 và 6n+4

Ta có (6n+3)-(6n+4) chia hết cho d

=> 1 chia hết cho d

=> d=1

vậy 2n+1 vafn+2 là 2 số nguyên tố cùng nhau

Gọi d=ƯCLN(2n+1;2n^2-1)

=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d

=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d

=>n+1 chia hết cho d và 2n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau

23 tháng 9 2023

Đc gần 1 năm r nè:)

4 tháng 12 2017

Gọi UCLN(2n+1; 2n+3) là d

Ta có:2n+1 chia hết cho d =>2n+3-2n+1 chia hết cho d =>2chia hết cho d =>d thuộc {1:2}

          2n+3 chia hết cho d 

Mà 2n+1 là số lẻ =>d Không thuộc {2}

Vậy d thuộc {1}=>2n+1 và 2n+3 là 2 số nguyên tố cùng nhau. 

\(\text{Gọi }\left(2n+1,2n+3\right)=d\)

\(\Rightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\\left(2n+3\right)⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)=2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

\(\text{Dễ thấy }\hept{\begin{cases}2n+1\text{không chia hết cho 2 }\\2n+3\text{không chia hết cho 2 }\end{cases}}\)

\(\Rightarrow d\ne2\Rightarrow d=1\)

\(\text{Vậy }\left(2n+1,2n+3\right)=1\)

12 tháng 11 2015

Gọi ƯCLN(n+2;2n+3)=d

Ta có: n+2 chia hết cho d

2(n+2) chia hết cho d

2n+4 chia hết cho d

có 2n+3 chia hết cho d

=>2n+4-(2n+3) chia hết cho d

2n+4-2n-3 chia hết cho d

(2n-2n)+(4-3) chia hết cho d

1 chia hết cho d hay d=1

=>ƯCLN(n+2;2n+3)=1

Do đó n+2 và 2n+3 là 2 số nguyên tố cùng nhau

Vậy n+2 và 2n+3 là 2 số nguyên tố cùng nhau

25 tháng 1 2015

Gọi ƯCLN 2 số trên là a

2n+1 chia hết cho a=> 3(2N+1)chia hết cho a=> 6n+3 chia hết cho a(1)

 3n+1chia hết cho a=>2(3N+1)chia hết cho a=>6N+2 chia hết cho a(2)

tỪ (1) VÀ (2), TA CÓ (6n+3)-(6n+2) chia hết cho a

=> 1 chia hết cho a

=>a=1

vậy n+1 va 3n+1(n la so tu nhien) la hai so nguyen to cung nhau