Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
D=1+.....+4^11chia het cho 5
D=(1+4)+(4^2+4^3)+......+(4^10+4^11)chia het cho 5
D=(1+4)+4^2(1+4)+....+4^10(1+4)chia het cho 5
D=5+4^2.5+....+4^10.5chia het cho 5
D=5(4^2+4^4+....+4^10)chia het cho 5
suy ra Dchia het cho 5 (do 5 chia het cho 5)
vậy Dchia het cho 5
P= 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
2P = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28
2P - P = ( 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 ) - ( 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 )
P = 0+0+0+0+0+0 + 28 - 1
P = 28 -1
P = 256 -1
P = 255
Mà 255 chia hết cho 3
nên P chia hết cho 3
Mình làm thiếu 1 bước , mong bạn thông cảm
P = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
= 2( 1 + 2 ) + 22( 1 + 2 ) . 24( 1 + 2 ) . 26( 1 + 2 )
= ( 2 . 3 ) + ( 22 .3 ) + (24 . 3 ) + ( 26 . 3 )
=> P chia hết cho 3
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
\(P=\left(1^2+2^2+...............+2015^2\right):\left(2^2+4^2+........+4030^2\right)\)
\(P=\left(1^2+2^2+............+2015^2\right):\left[\left(1.2\right)^2+\left(2.2\right)^2+.............+\left(2.2015\right)^2\right]\)
\(P=\left(1^2+2^2+........+2015^2\right):\left(1^2.2^2+2^2.2^2+...............+2015^2.2^2\right)\)
\(P=\left(1^2+2^2+......+2015^2\right):2^2.\left(1^2+2^2+.........+2015^2\right)\)
\(P=\left(1^2+2^2+........+2015^2\right).\frac{1}{2^2.\left(1^2+2^2+..............+2015^2\right)}\)
\(P=\frac{1^2+2^2+...............+2015^2}{2^2.\left(1^2+2^2+............+2015^2\right)}=\frac{1}{2^2}=\frac{1}{4}\)
Chúc bạn học tốt
A=1/2^2+1/3^2+...+1/10^2
=>A<1-1/2+1/2-1/3+...+1/9-1/10=1-1/10<1