Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge ca\)
Cộng các vế => đpcm
b, Áp dung bdt a, ta có thể cm đc \(\left(x+y+z\right)^2\ge3xy+3yz+3zx\)
Thay x,y,z lần lượt bởi ab;bc;ca => ĐPCM
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)
Cộng theo vế 3 BĐT trên rồi thu gọn
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng tiếp BĐT AM-GM
\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)
Tương tự rồi cộng theo vế có ĐPCM
Bài 2:
Quy đồng BĐT trên ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)
Bài 4: Áp dụng BĐT AM-GM
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự rồi cộng theo vế
Bài 5: sai đề tự nhien có dấu - :v nghĩ là +
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\)
\(b^2+3=b^2+ab+bc+ca=\left(b+c\right)\left(a+b\right)\)
Tương tự với các mẫu thức khác, ta có :
\(P=\frac{a^3}{\left(b+c\right)\left(a+b\right)}+\frac{b^3}{\left(c+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+a\right)\left(a+b\right)}\)
Áp dụng bất đẳng thức Cauchy :
\(\frac{a^3}{\left(b+c\right)\left(a+b\right)}+\frac{b+c}{8}+\frac{a+b}{8}\ge3\sqrt[3]{\frac{a^3\left(b+c\right)\left(a+b\right)}{64\left(b+c\right)\left(a+b\right)}}=\frac{3a}{4}\)
Tương tự ta có :
\(\frac{b^3}{\left(c+a\right)\left(b+c\right)}+\frac{c+a}{8}+\frac{b+c}{8}\ge\frac{3b}{4}\)
\(\frac{c^3}{\left(c+a\right)\left(a+b\right)}+\frac{c+a}{8}+\frac{a+b}{8}\ge\frac{3c}{4}\)
Cộng theo vế của các bđt ta được :
\(P+2\left(\frac{a+b}{8}+\frac{b+c}{8}+\frac{c+a}{8}\right)\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Leftrightarrow P\ge\frac{3\left(a+b+c\right)}{4}-\left(\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}\right)\)
\(\Leftrightarrow P\ge\frac{3\left(a+b+c\right)}{4}-\frac{2\left(a+b+c\right)}{4}\)
\(\Leftrightarrow P\ge\frac{a+b+c}{4}\)
Ta có bđt quen thuộc : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3\cdot3=9\)
\(\Leftrightarrow a+b+c\ge3\)
Do đó \(P\ge\frac{3}{4}\)( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
câu a ) chuyển vế => đpcm
câu b) nhân 2 vế vs 2 rồi chuyển vế => đpcm
câu c) chuyển vế pt đa thức thành nhân tử ( cái này lớp 8 đã pt rồi)=> đpcm