K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
21 tháng 10 2016
Ta có : 9^1003 - 9 = 0
Mà 0 chia hết cho 16
=> 9^ 1003 - 9 chia hết cho 16
k nha !
AL
1
29 tháng 3 2017
\(10^{2011}+100^{2012}+16⋮9\Leftrightarrow1+0+0+...+0+1+0+...+0+1+6⋮9\)
\(\Rightarrow9⋮9\)
Vậy \(10^{2011}+10^{2012}+16⋮9\)
CN
0
VP
2
23 tháng 7 2015
a) 10\(^9\)+10\(^8\)+10\(^7\)
= 10\(^7\). (100 + 10 + 1)
= 10\(^6\) . 2 . 555 chia hết cho 555
b) Ta thấy: 16\(^5\)= 2\(^{20}\)
=> A = 16\(^5\) + 2\(^{15}\) = 2\(^{20}\)+ 2\(^{15}\)
= 2\(^{15}\).2\(^5\)+ 2\(^{15}\)
= 2\(^{15}\). (2\(^5\)+1)
= 2\(^{15}\).33
số này luôn chia hết cho 33
20 tháng 10 2018
b) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)
Ta có:
91003 - 9 = 9.(91002 - 1)
Có: \(9^2\equiv1\left(mod16\right)\Rightarrow9^{1002}\equiv1\left(mod16\right)\)
\(\Rightarrow9^{1002}-1⋮16\)
\(\Rightarrow9.\left(9^{1002}-1\right)⋮16\)
hay \(9^{1003}-9⋮16\left(đpcm\right)\)
mod và đpcm là gì vậy bn mk ko hiểu lắm