Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)
\(S=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Ta có đpcm
HA ~~! Vẫn còn bài này !
1/101>1/150
1/102>1/150
1/103>1/150
....
1/150=1/150
Tất cả có 50 dữ kiện
Vậy 1/101+1/102+...+1/150>50/150=1/3 (1)
Tiếp theo
1/151>1/200
1/152>1/200
...
1/200=1/200
Tương tự trên, thì :
1/151+......+1/200>50/200=1/4 (2)
Cộng (1) và (2), thì A>(1/3+1/4)=7/12 \(\left(ĐPCM\right)\).
\(A>\left(\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)\) (mỗi ngoặc có 50 số hạng)
\(;A>\left(\frac{1}{150}.50\right)+\left(\frac{1}{200}.50\right)=50.\left(\frac{1}{150}+\frac{1}{200}\right)=50.\frac{7}{600}=\frac{7}{12}\)
ta có
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12
A=\(\frac{1}{101}+\frac{1}{102}+............+\frac{1}{199}+\frac{1}{200}\)
Chứng tỏ A<\(\frac{5}{6}\)
A= 1/100x100+1/101x101+..........+1/199x199
Vì 1/100x100<99x100
1/101x101<100x101
...........
1/199x199 < 1/198x199
=) A< 1/99x100+1/100x101+...+1/198x199
A<1/99-1/100+1/100-1/101+.....+1/198-199
A<100/19701=0,0050....
Mà 1/100=0,01
=> A<1/100
K đúng nhé
Giải
\(A=\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}\)
\(\Rightarrow A< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
\(\Rightarrow A< \frac{100}{100}=1\)
Vậy A < 1 (đpcm)