K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

câu a mình nghĩ đề là\(x^2-x+1\)

17 tháng 10 2019

b) \(x-x^2-2=-\left(x^2-x+2\right)=-[\left(x-\frac{1}{2}\right)^2+\frac{7}{4}]\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{7}{4}\)<0 ∀\(x\)

25 tháng 7 2019

\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)

\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)

\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)

\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)

\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)

25 tháng 7 2019

Cách khác câu e:

\(x^2-xy+y^2=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge0\forall xy\) (đpcm)

10 tháng 7 2021

\(A=9x^2-6x+2=\left(3x\right)^2-2.3x+1+1=\left(3x-1\right)^2+1>0\forall x\)

Vậy ta có đpcm 

\(B=x^2-2xy+y^2+1=\left(x-y\right)^2+1>0\forall x;y\)

Vậy ta có đpcm 

10 tháng 7 2021

Trả lời:

\(A=9x^2-6x+2=\left(3x\right)^2-2.3x.1+1+1=\left(3x-1\right)^2+1\ge1>0\forall x\)

Vậy A > 0 với mọi x 

\(B=x^2-2xy+y^2+1=\left(x-y\right)^2+1\ge1>0\forall x;y\)

Vậy B > 0 với mọi x;y

16 tháng 8 2018

a) Ta có:

\(x^2+4x+5\)

\(=x^2+2.x.2+4+1\)

\(=\left(x+2\right)^2+1\)

\(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)

\(\Rightarrow x^2+4x+5>0\forall x\)

b) Ta có:

\(x^2-x+1\)

\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow x^2-x+1>0\forall x\)

c) Ta có:

\(12x-4x^2-10\)

\(=-\left(4x^2-12x+10\right)\)

\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)

\(=-\left(2x-3\right)^2-1\)

\(-\left(2x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)

\(\Rightarrow12x-4x^2-10< -1\)

8 tháng 7 2018

1/

a, \(x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)

b,\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)

2/

a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x-1=0 <=> x=1

Vậy Pmax = 4 khi x = 1

b, \(M=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)^2+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy Mmax = 3/4 khi x = 1/2, y = -3

25 tháng 7 2019

a) 

Đặt \(A=9x^2-6x+2\)

\(=\left(3x\right)^2-2.3x+1+1\)

\(=\left(3x+1\right)^2+1\)

Ta có: \(\left(3x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(3x+1\right)^2+1\ge0+1;\forall x\)

Hay \(A\ge1>0;\forall x\)

Các phần khác tương tự cứ việc biến đổi thành hằng đẳng thức

25 tháng 7 2019

\(a,9x^2-6x+2\)

\(=\left(3x\right)^2-2.3x.1+1^2+1\)

\(=\left(3x-1\right)^2+1\)

\(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)

\(\Rightarrow9x^2-6x+2>0\forall x\)

\(b,x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

\(\Rightarrow x^2+x+1>0\forall x\)

24 tháng 6 2017

a) \(x^2+x+2=\left(x^2+x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)đúng \(\forall x\in R\)

b) \(x^2-4x+10=\left(x^2-4x+4\right)+6=\left(x-2\right)^2+6\ge6>0\)đúng \(\forall x\in R\)

c) \(x\left(x-4\right)+10=x^2-4x+10\)(giải như câu b)

d) \(x\left(2-x\right)-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3< 0\)đúng \(\forall x\in R\)

e) \(x^2-5x+2017=\left(x^2-5x+\frac{25}{4}\right)+\frac{8043}{4}=\left(x-\frac{5}{2}\right)^2+\frac{8043}{4}\ge\frac{8043}{4}>0\)đúng \(\forall x\in R\)

1: \(x^2+x+1\)

\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

2: \(2x^2+2x+1\)

\(=2\left(x^2+x+\dfrac{1}{2}\right)\)

\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\forall x\)

3: 

\(x^2+y^2=\left(x-y\right)^2+2xy=7^2+2\cdot60=169\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2\cdot\left(xy\right)^2\)

\(=169^2-2\cdot60^2=21361\)

8 tháng 10 2019

a)\(x^2-2xy+y^2+1=\left(x+y\right)^2+1\ge1>0\)

b)\(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

c)\(9x^2+12x+10=\left(9x^2+12x+4\right)+6=\left(3x+2\right)^2+6\ge6>0\)

d)\(3x^2-x+1=2x^2+\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=2x^2+\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0`\)

8 tháng 10 2018

a, Sửa đề:

-x2-2x-2

=-(x2+2x+2)

=-(x2+2x+1+1)

=-[(x+1)2+1]<0\(\forall\)x

b, -x2-6x-11

=-(x2+6x+11)

=-(x2+2.x.3+32+2)

=-[(x+3)2+2]<0\(\forall\)x

Đúng tick nha,oaoa

8 tháng 10 2018

a, -x - 2x - 2

= -(x+2x+1)-1

= -(x+1)2 -1

Có (x + 1)2 ≥0 ⇒- (x + 1) ≤ 0 ⇒ -(x + 1)2 - 1≤ -1

Do đó - x - 2x - 2 < 0 ∀ x

b, -x2 - 6x - 11

= -(x2 + 2.3.x+ 32)-2

= -(x+3)2 - 2

Có (x + 3)2 ≥0 ⇒- (x + 3) ≤ 0 ⇒ -(x + 3)2 - 2 ≤ -2

Do đó -x2 - 6x - 11 <0 ∀ x