Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phùng Gia Bảo câu b xem người ta giải trong câu hỏi tương tự chứ j
a) \(8x+3y⋮11\Leftrightarrow7\left(8x+3y\right)⋮11\)(vì \(\left(7,11\right)=1\))
\(\Leftrightarrow\left[\left(56x-5.11x\right)+\left(21y-2.11y\right)\right]⋮11\)
\(\Leftrightarrow\left(x-y\right)⋮11\).
b) \(\left(4x+3y\right)⋮13\Leftrightarrow5\left(4x+3y\right)⋮13\)(vì \(\left(5,13\right)=1\))
\(\Leftrightarrow\left[\left(20x-13x\right)+\left(15y-13y\right)\right]⋮13\)
\(\Leftrightarrow\left(7x+2y\right)⋮13\).
\(A=1+3^2+3^4+...+3^{100}\)
\(9A=3^2+3^4+3^6+...+3^{102}\)
\(8A=3^{102}-1\)
\(\Rightarrow8A-26=3^{102}-1-26=3^{102}-27\)
Vì \(3^{102}-27⋮3\)(1)
\(3^{102}-27⋮2\)(\(3^{102}-27\)là số chẵn ) (2)
\(3^{102}-27=9\left(3^{100}-3\right)\)\(\Rightarrow3^{102}-27⋮9\)(3)
Từ (1) , (2), (3) \(\Rightarrow8A-26⋮54\)\(\left(\left(2,3,9\right)=1\right)\)
vậy ...
\(A=1+3^2+3^4+...+3^{100}\)
\(\Leftrightarrow3^2A=3^2\left(1+3^2+3^4+....+3^{100}\right)\)
\(\Leftrightarrow9A=3^2+3^4+3^6+...+3^{102}\)
\(\Leftrightarrow9A-A=\left(3^2+3^4+3^6+....+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(\Leftrightarrow8A=3^{102}-1\)
\(\Leftrightarrow8A-26=3^{102}-1-26=3^{102}-27\)
Ta có: \(3^{102}⋮3;27⋮3\Rightarrow3^{102}-27⋮3\left(1\right)\)
\(3^{102}-27⋮2\left(2\right)\)(3^102 -27 là số lẻ)
\(3^{102}-27=\left(3^2\right)^{51}-27=9^{51}-27⋮9\left(3\right)\)
(1)(2)(3) => 8A-26 chia hết cho 54 (đpcm)