K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

cái này lớp 6 cũng làm dc mak bạn.

Với n là số chẵn nên \(n^3+n\) là số chẵn suy ra \(n^3+n+2\) là số chẵn nên là hợp số vì n là số tự nhiên khác 0

Với n là số lẻ nên \(n^3\) là số lẻ nên \(n^3+n\) là số chẵn suy ra \(n^3+n+2\) là số chẵn nên là hợp số vì n là số tự nhiên khác 0

Vậy với mọi n là số tự nhiên khác 0 thì \(n^3+n+2\) là hợp số 

12 tháng 2 2019

\(n^3+n+2=n^3-n+2n+2=n\left(n-1\right)\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n^2-n+2\right)\)

Vì n thuộc N* nên n+1 > 1, n2-n+2 > 1 => dpdcm

11 tháng 11 2016

Đề sai nhé vì nếu n = 0 thì n+ n + 2 = 2 là số nguyên tố nhé, n =  1 thì tổng đó = 3 cũng là số nguyên tố nhé

30 tháng 9 2019

sai rui

15 tháng 11 2016

n3 + n + 2

= n3 - n + 2n + 2

= n.(n2 - 1) + 2.(n + 1)

= n.(n - 1).(n + 1) + 2.(n + 1)

= (n + 1).(n2 - n + 2), có ít nhất 3 ước khác 1

=> n3 + n + 2 là hợp số với mọi n ϵ N* (đpcm)

15 tháng 11 2016

Có: n3 + n + 2 = n(n2+1) + 2

- Nếu n lẻ => n2 lẻ => n2 + 1 chẵn => n2 + 1 chia hết cho 2 => n(n2+1) chia hết cho 2

Mà n(n2+1) + 2 > 2 => n(n2+1) + 2 là hợp số => n3 + n + 2 là hợp số (1)

- Nếu n chẵn => n(n2+1) chia hết cho 2 => n(n2+1) + 2 chia hết cho 2

Mà n(n2+1) + 2 > 2 => n(n2+1) + 2 là hợp số => n3 + n + 2 là hợp số (2)

Từ (1) và (2) => n3 + n + 3 là hợp số với mọi n \(\in\) N*

15 tháng 11 2016

Ta có

n3 + n + 2 = (n + 1)(n2 - n + 2)

Ta thấy ( n + 1) > 1

n2 - n + 2 > 1

Vậy n3 + n + 2 luôn chia hết cho 2 số khác 1 nên nó là hợp số

23 tháng 5 2015

1/           n3+n+2=(n+1)(n2-n+2)

Xet chẵn lẻ của n  => chia hết cho 2 => hợp số

online math oi, chọn câu trả lời này đi

14 tháng 9 2016

Nếu n lẻ thì n^3 và n là số lẻ 

=> n^3 + n + 2 là số chẵn mà n lớn hơn hoặc bằng 1

=> n^3 + n + 2 là hợp số (1)

Nếu n chẵn thì n^3 và n là số chẵn 

=> n^3 + n+2 là hợp số (2)

Từ (1) và (2) => n^3+n+2 là hợp số (đpcm!)

sao lâu thế mọi n

11 tháng 3 2016

muốn nhanh hải từ từ chứ! :D

1. Vì $n^3$ và $n$ cùng tính chẵn lẻ nên\(n^3+n+2\) chia hết cho 2.

2. Chắc đề là a^2+b^2+c^2=a^3+b^3+c^3=1.

23 tháng 10 2016

Ta có:

\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)=n\left(2n^2+2n+n+1\right)=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)

\(=n\left(n+1\right)\left(2n-2+3\right)=n\left(n+1\right)\left(2n-2\right)+3n\left(n+1\right)=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)

Ta thấy:

\(n-1;n;n+1\) là 3 số nguyên liên tiếp (\(n\in Z\)) => tích của chúng chia hết cho 2 và 3. \(\Rightarrow2\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

\(3n\left(n+1\right)⋮6\Rightarrow2n^3+3n^2+n⋮6\)

 

27 tháng 9 2017

\(\frac{n}{12}+\frac{n^2}{8}+\frac{n^3}{24}=\frac{2n+3n^2+n^3}{24}=\frac{n^3+2n^2+n^2+2n}{24}=\frac{n^2\left(n+2\right)+n\left(n+2\right)}{24}\)

\(=\frac{\left(n^2+n\right)\left(n+2\right)}{24}=\frac{n\left(n+1\right)\left(n+2\right)}{24}\)

Do n chẵn nên n=2k (k nguyên) => n+2=2k+2=2(k+1) => n(n+2)=2k.2(k+1)=4k(k+1)

k(k+1) là 2 số nguyên liên tiếp, trong đó có ít nhất 1 số chẵn nên k(k+1) chia hết cho 2 => 4k(k+1) chia hết cho 8

=>n(n+2) chia hết cho 8=>n(n+1)(n+2) chia hết cho 8 (1)

Mặt khác n;n+1;n+2 là 3 số nguyên liên tiếp nên trong đó có ít nhất 1 số chia hết cho 3 (tự chứng minh hoặc xem cách chứng minh trên mạng nhé)

=>n(n+1)(n+2) chia hết cho 3 (2)

Từ (1) và (2) và (3;8)=1 => n(n+1)(n+2) chia hết cho 3.8=24

=>\(\frac{n\left(n+1\right)\left(n+2\right)}{24}\) nguyên => đpcm