Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)
\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)
a/ Xét hiệu: \(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng) (đpcm)
''='' xảy ra khi a = b
b/ Sửa đề chút nhé: CMR:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\)
Áp dụng bđt AM-GM có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}\cdot\dfrac{1}{b}}=2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\);
Tương tự ta có:
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}}\); \(\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{ac}}\)
Cộng 2 vế ba bđt trên ta được:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\left(đpcm\right)\)
''='' xảy ra khi a = b = c
Áp dụng bất đẳng thức cô si ta có, với a,b,c >0
a/bc + b/ac ≥ 2*1/c
b/ac + c/ab ≥ 2*1/a
a/bc + c/ab ≥ 2*1/b
Cộng từng vế của 3 bất đẳng thức trên với nhau ta được
2*(a/bc + b/ac + c/ab) ≥ 2(1/a+1/b+1/c)
<=> đpcm
Sử dụng bất đẳng thức Cô si cho hai số dương ta có:
\dfrac{a}{bc}+\dfrac{b}{ca}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ca}}=\dfrac{2}{b}bca+cab≥2bca.cab=b2
Viết hai bất đẳng thức tương tự rồi cộng theo vế ba bất đẳng thức nhận được rồi chia 2 vế bất đẳng thức cho 2 ta được đpcm.
Sử dụng bất đẳng thức Cô si cho 2 số dương ta có
\dfrac{ab}{c}+\dfrac{bc}{a}\ge2bcab+abc≥2b ; \dfrac{bc}{a}+\dfrac{ca}{b}\ge2cabc+bca≥2c ; \dfrac{ca}{b}+\dfrac{ab}{c}\ge2abca+cab≥2a
Cộng theo vế 3 bất đẳng thức trên rồi chia hai vế bất đẳng thức nhận được cho 2 ta được đpcm. Đẳng thức xảy ra khi và chỉ khi a=b=ca=b=c.
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2\sqrt{b^2}=2b\)
Tương tự : \(\frac{bc}{a}+\frac{ca}{b}\ge2c\); \(\frac{ab}{c}+\frac{ca}{b}\ge2a\)
Cộng vế với vế các bđt trên ta được đpcm
Đẳng thức xảy ra <=> a=b=c
Fix đề: Cho a,b,c không âm. Chứng minh \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{4}{ab+bc+ca}\)
Dự đoán điểm rơi sẽ có 1 số bằng 0.
Giả sử \(c=min\left\{a,b,c\right\}\) ( c là số nhỏ nhất trong 3 số) thì \(c\ge0\)
do đó \(ab+bc+ca\ge ab\) và \(\dfrac{1}{\left(b-c\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c-a\right)^2}=\dfrac{1}{\left(a-c\right)^2}\ge\dfrac{1}{a^2}\)
BDT cần chứng minh tương đương
\(ab\left[\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\ge4\)
\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{a^2+b^2}{ab}\ge4\)
\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{ab}+2\ge4\)
BĐT trên hiển nhiên đúng theo AM-GM.
Do đó ta có đpcm. Dấu = xảy ra khi c=0 , \(\left(a-b\right)^2=a^2b^2\) ( và các hoán vị )
Lời giải:
Vì $a+b+c=1$ nên:
\(\text{VT}=\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\right)\)
\(=\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)+\frac{3}{4}\)
\(=\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}\right)+\frac{3}{4}\)
\(=(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab})+(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{4bc})+(\frac{ca}{c^2+a^2}+\frac{c^2+a^2}{4ac})+\frac{3}{4}\)
\(\geq 2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+\frac{3}{4}=\frac{15}{4}\) (áp dụng BĐT AM-GM)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Vì \(a>0;b>0;c>0\Rightarrow\dfrac{ab}{c}>0;\dfrac{bc}{a}>0;\dfrac{ac}{b}>0\)
Áp dụng bất đẳng thắng Cosi cho các cặp:
\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{\dfrac{ab}{c}.\dfrac{bc}{a}}\Leftrightarrow\dfrac{ab}{c}+\dfrac{bc}{a}\ge2b\)
\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{bc}{a}.\dfrac{ac}{b}}\Leftrightarrow\dfrac{bc}{a}+\dfrac{ac}{b}\ge2c\)
\(\dfrac{ab}{c}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{ab}{c}.\dfrac{ac}{b}}\Leftrightarrow\dfrac{ab}{c}+\dfrac{ac}{b}\ge2a\)
\(\Rightarrow2\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\left(dpcm\right)\)
\("="\Leftrightarrow a=b=c\)
trong câu hỏi tương tự cũng có mà