K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề sai nha

S=3+32+33+...+3223

S=(3+32+33+34+35+36+37+38)+.....+(3216+3217+3218+3219+3320+3321+3322+3323)

S=(3+32+33+34+35+36+37+38)+....+3215.(3+32+33+34+35+36+37+38)

S=9840+...+3215.9840

S=9840.(1+...+3215)

S=41.240.(1+...+3215)\(⋮\)41

Vậy S\(⋮\)41

Chúc bn học tốt

24 tháng 12 2020

Nguyễn Trí Nghĩa (Team ngọc rồng) đề bài không có sai đâu bạn đề bài đúng đấy cô giáo mk cx cho bài này mak

Ta có :

 \(S=4+3^2+3^3+.....+3^{223}\)

\(=1+3+3^2+3^3+....+3^{223}\)

\(\Rightarrow3S=3+3^2+3^3+3^{224}\)

\(\Leftrightarrow S=\frac{3^{224}-1}{2}=\frac{\left(3\right)^{4^{56}}-1}{2}\)

Vì  \(3^4\equiv-1\left(mod41\right)\)

\(\Rightarrow3^{4^{56}}\equiv1\left(mod41\right)\)

\(\Leftrightarrow3^{4^{56}}-1\equiv0\left(mod41\right)\)

\(\Leftrightarrow\frac{3^{4^{56}}-1}{2}\equiv0\left(mod41\right)\)

Hay \(S⋮41\) ( đpcm )

20 tháng 11 2016

S=1+32+34+36+.............................+398

9S=3+34+36+38+.........................+3100

=> 9S-S=3100-1

3100-1=(34)25-1

=(...1)25-1

=(.....1)-1

=(.....0) chia hết cho 10

Vậy S chia hết cho 10

20 tháng 11 2016

a, \(S=1+3^2+3^4+3^6+...+3^{98}\)

\(\Rightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{100}\)

\(\Rightarrow3^2S-S=\left(3^2+3^4+3^6+3^8+...+3^{100}\right)-\left(1+3^2+3^4+3^6+...+3^{98}\right)\)

\(\Rightarrow8S=3^{100}-1\)

\(\Rightarrow S=\frac{3^{100}-1}{8}\)

Vậy : \(S=\frac{3^{100}-1}{8}\)

b, \(S=1+3^2+3^4+3^6+...+3^{98}\)

\(S=\left(1+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{96}+3^{98}\right)\)

\(S=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{96}\left(1+3^2\right)\)

\(S=1.10+3^4.10+...+3^{96}.10\)

\(S=\left(1+3^4+...+3^{96}\right).10\)

Vì : \(1+3^4+...+3^{96}\in N\Rightarrow S⋮10\)

Vậy : \(S⋮10\)

30 tháng 6 2016

B = (1 + 3) + (32+33)+.....+(389+390)

  = 4 + 32 .(1 + 3) + .....+390.(1+3)

 = 1 .4 + 32.4 + ..... +390.4

= 4.(1 + 32 + .... +390) chia hết cho 4

6 tháng 9 2018

\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)

\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)

\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)

7 tháng 10 2016

Câu hỏi của Nguyễn Nhật Loan - Toán lớp 6 - Học toán với OnlineMath

7 tháng 10 2016

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

9 tháng 8 2014

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +22 + 23) + (2+ 25  + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

 

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 33 + 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 32 + 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 337) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34  + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

 

 

20 tháng 12 2014

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

 

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 337) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

 
13 tháng 10 2018

\(S=1+2+2^2+...+2^{99}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(S=3+2^2.3+...+2^{98}.3\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)

8 tháng 8 2017

S=5+52+53+....+52004

 =(5+53)+(52+54)+.....+(52002+52004)

=5(1+52)+52(1+52)+.........+52002(1+52)

=5.26+52.26+........+52002.26

=26.(5+52+............+52002) chia hết cho 26

Vậy S chia hết cho 26.

=

8 tháng 8 2017

\(S=5+5^2+5^3+...+5^{2004}\)

\(S=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)

\(S=780+5^4.\left(5+5^2+5^3+5^4\right)+...+5^{2000}.\left(5+5^2+5^3+5^4\right)\)

\(S=780+5^4.780+...+5^{2000}.780\)

\(S=780.\left(1+5^4+...+5^{2000}\right)\)

Ta có \(S=5+5^2+5^3+...+5^{2004}\) \(⋮\) \(780\)

Phân tích: \(780=26.30\)

Tức \(S=5+5^2+5^3+...+5^{2004}\)  chia hết cho 26 và 30

Vậy \(S=5+5^2+5^3+...+5^{2004}\)  chia hết cho 26

23 tháng 3 2021

Ta có S=1+32+34+...+398=>32.S=32+34+36+....+3100

=(S-1)+3100

=>9S=S+3100-1=>\(S=\frac{3^{100}-1}{8}\)

Ta thấy S=1+32+34+..+398=(1+398)+(32+34)+....+(394+396)

Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...

Tóm lại S có tận cùng là 0 hay S chia hết cho 10.

23 tháng 3 2021

Sửa lại S=1+32+34+..+398=(1+398)+(32+34)+...+(394+396)

27 tháng 11 2015

c/m chia hết cho 2 trước:

ta có :A= (3+32)+(33+34)+(35+36)+(37+38)

             = 3(1+3)+33(1+3)+35(1+3)+37(1+3)

             = 3.4 +33.4+35.4+37.4

             = 4(3+33+35+37) chia hết cho 2

vậy A chia hết cho 2

c/m chia hết cho 5:
ta có :

A=(3+32+33+34)+(35+36+37+38)

= 3(1+3+32+33) + 35(1+3+32+33)

=3.40+35.40 chia hết cho 5

vậy A chia hết cho 5

 

27 tháng 11 2015

A =3 + 32 + 3+ 34 + 35 + 36 + 37 + 38

A=(3 + 32 + 3+ 34) + (35 + 36 + 37 + 38)

A=3( 30+31 + 32 + 33) +35( 30+31 + 32 + 33)

A=3.40+35.40

A=(3+35).40

Vì 40 chia hết cho 10 nên A chia hết cho 10

=>A chia hết cho 2 và 5

Vậy.......