Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=2010\left(1+2010\right)+2010^3\left(1+2010\right)+....+2010^{2009}\left(1+2010\right)\)
\(=2010.2011+...+2010^{2009}.2011\) chia hết cho 2011
=>đpcm
A=2010^1+2010^2+2010^3+..........................................+2010^2010
vay suy ra co tat ca 2010 s hang vay ghep cap
A=2010(1+2010)+2010^3(1+2010)+..........................+2010^9(1+2010)
A=2010.2011+2010^3.2011+............................+2010^9.2011
A=2011(2010+........2010^9) chia het 2011
suy ra A chia het cho 2011
M= ( 1+20101)+(20102+20103)+(20104+20105)+(20106+20107)
M= 1.(2010+1) + 20122.(2010+1)+20104.(2010+1)+20106.(2010+1)
M= 2011.(1+20122+20104+20106)
Vậy M chia hết cho 2011
dễ ợt
s=2010(1+20100+2010^3(1+2010)+............+2010^2009(1+2010)
s=2010.2011+2010^3.2011+.........+2010^2009.2011
s=2011(2010+2010^3+.......+2010^2009) chia hết cho 2011
\(S=\left(2010+2010^2\right)+\left(2010^3+2010^4\right)+...+\left(2010^{2009}+2010^{2010}\right)\)
\(S=2010\left(2010+1\right)+2010^3\left(2010+1\right)+...+2010^{2009}\left(2010+1\right)\)
\(S=2011.\left(2010+2010^3+2010^5+...+2010^{2009}\right)\) chia hết cho 2011
Lời giải:
Đặt $A=5^0+5^1+5^2+5^3+....+5^{2010}+5^{2011}$
$A=(5^0+5^1)+(5^2+5^3)+....+(5^{2010}+5^{2011})$
$=(1+5)+5^2(1+5)+...+5^{2010}(1+5)$
$=(1+5)(1+5^2+....+5^{2010})$
$=6(1+5^2+....+5^{2010})\vdots 6$
Dễ thế này mà cũng phải hỏi hả em?
Chị chỉ cần ngoáy phát là xong cả đống.