K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: Đặt AB/3=AC/4=BC/5=k

=>AB=3k; AC=4k; BC=5k

Vì \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

13 tháng 3 2020

1.

\(AB^2+AC^2=BC^2\\ hay\left(3x\right)^2+\left(4x\right)^2=\left(5x\right)^2\\\Leftrightarrow 9x^2+16x^2=25x^2\\\Leftrightarrow 25x^2=25x^2\left(tm\right)\)

Vậy trong trường hợp này \(\Delta ABC\) là tam giác vuông.

13 tháng 3 2020

2.

\(\frac{AB}{3}=\frac{AC}{4}=\frac{BC}{5}=a\\ \Rightarrow\left\{{}\begin{matrix}AB=3a\\AC=4a\\BC=5a\end{matrix}\right.\)

Ta có: \(AB^2+AC^2=9a^2+16a^2=25a^2=BC^2=\left(5a\right)^2=25a^2\left(tm\right)\)

Vậy trong TH này tam giác ABC là tam giác vuông (Theo đl PTG đảo)

a)Ta có:

\(AB^2+AC^2= \left(3x\right)^2+\left(4x\right)^2=9x^2+16x^2=25x^2=\left(5x\right)^2=BC^2\)Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)

b)Ta có:

\(AB^2+AC^2=\left(5x\right)^2+\left(12x\right)^2=25x^2+144x^2=169x^2=\left(13x\right)^2=BC^2\)

Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)

c)Ta có:

\(AB^2+BC^2=\left(40x\right)^2+\left(9x\right)^2=1600x^2+81x^2=1681x^2=\left(41x\right)^2=AC^2\)

Theo định lí Pytago đảo, △ABC vuông tại B (đpcm)

d)Ta có:

\(20AB=15AC=12BC\Rightarrow\frac{20AB}{60}=\frac{15AC}{60}=\frac{12BC}{60}\Rightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{BC}{5}=k\)\(\Rightarrow\left\{{}\begin{matrix}AB=3k\\AC=4k\\BC=5k\end{matrix}\right.\)

\(\Rightarrow AB^2+AC^2=\left(3k\right)^2+\left(4k\right)^2=9k^2+16k^2=25k^2=\left(5k\right)^2=BC^2\)

Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)

e)Ta có:

\(65AB=156AC=60BC\Rightarrow\frac{65AB}{780}=\frac{156AC}{780}=\frac{60BC}{780}\Rightarrow\frac{AB}{12}=\frac{AC}{5}=\frac{BC}{13}=k\)\(\Rightarrow\left\{{}\begin{matrix}AB=12k\\AC=5k\\BC=13k\end{matrix}\right.\)

\(\Rightarrow AB^2+AC^2=\left(12k\right)^2+\left(5k\right)^2=144k^2+25k^2=169k^2=\left(13k\right)^2=BC^2\)

Theo định lí Pytago đảo, △ABC vuông tại A (đpcm)

14 tháng 1 2020

giúp mình với

14 tháng 1 2020

mình cần gấp

11 tháng 1 2018

Câu a) Nè

Áp dụng định lí Pythagoras vào tam giác ABC

Ta có: \(AB^2+AC^2=BC^2\)

Vì AH hạ từ đỉnh A và vuông góc với BC nên AH là đường cao của tam giác ABC

Áp dụng tính chât đường cao của tam giác vuông

Ta có: \(AH\cdot BC=AB\cdot AC\)

Suy ra: \(AH^2\cdot BC^2=AB^2\cdot AC^2\)

Suy ra \(\frac{BC^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)

Suy ra \(\frac{AC^2+AB^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)

Suy ra: \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)

Vậy Kết luận 

~~~ Hết ~~~

Chụy là chanh đừng nhờn với chụy nha em.

Xong mik đã chứng minh xong một câu a) còn câu b dễ lắm tự làm nha, bro. Hết 

7 tháng 4 2016

1.b

2.b

3.c

Câu 1: C

Câu 2: A

Câu 3: D

Câu 4: C