K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2016

có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với

4 tháng 10 2016

Ta có:\(n^2+n+2=n\left(n+1\right)+2\)

+)Xét n chia hết cho 3 <=> n=3k \(\left(k\in Z+\right)\)

=>\(n^2+n+2=3k\left(3k+1\right)+2\) chia 3 dư 2 (1)

+)Xét n chia 3 dư 1 <=> n=3k+1

=>\(n^2+n+2=\left(3k+1\right)\left(3k+2\right)+2=9k^2+6k+3k+2+2\)

\(=3\left(3k^2+2k+k+1\right)+1\)chia cho 3 dư 1 (2)

+)Xét n chia 3 dư 2 <=> n=3k+2 

=>\(n^2+n+2=\left(3k+2\right)\left(3k+3\right)+2=9k^2+9k+6k+6+2\)

\(=3\left(3k^2+3k+2k+2\right)+2\)chia 3 dư 2 (3)

Từ (1), (2), (3) suy ra n2+n+2 không chia hết cho 3 với \(n\in Z+\)

5 tháng 10 2016

thanks

20 tháng 11 2019

Ta có: \(n\in Z^+\)

\(\Rightarrow2^nchẵn\)

\(\Rightarrow2^{2^n}\equiv\left(-1\right)^{2^n}\equiv1\left(mod3\right)\)

\(4^n\equiv1^n\equiv1\left(mod3\right)\)

\(16\equiv1\left(mod3\right)\)

\(\Rightarrow2^{2^n}+4^n+16\equiv1+1+1\equiv3\equiv0\left(mod3\right)\)

\(\Rightarrow2^{2^n}+4^n+16⋮3\left(đpcm\right)\)

đề như vậy thôi hả bạnhum

NV
7 tháng 10 2019

\(n^2-2n^4+n^2=n^2\left(n^4-2n^2+1\right)=n^2\left(n^2-1\right)^2\)

\(=\left[\left(n-1\right)n\left(n+1\right)\right]^2\)

\(\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp luôn chia hết cho 6

\(\Rightarrow\left[\left(n-1\right)n\left(n+1\right)\right]^2⋮36\)

21 tháng 3 2020

\(2\equiv-1\left(mod3\right)\Rightarrow2^{2^n}\equiv1\left(mod3\right)\)

\(4\equiv1\left(mod3\right)\Rightarrow4^n\equiv1\left(mod3\right)\)

\(16\equiv1\left(mod3\right)\)

\(\Rightarrow a=2^{2^n}+4^n+16\equiv1+1+1\equiv0\left(mod3\right)\)

Vậy \(a⋮3,\forall n\inℤ^+\)

13 tháng 6 2021

Sai nha phải xét n=0 chứ tại 2^n với n =0 thì lẻ mà

14 tháng 8 2019

\(b,n^2\left(n^4-1\right)\)

\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)

Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp

\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)

\(\Rightarrowđpcm\)

=> 

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

27 tháng 3 2017

ai bit lam ko