Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{97}\right)x\left(1-\frac{1}{98}\right)x...x\left(1-\frac{1}{1000}\right)\)
\(\frac{96}{97}\cdot x\cdot\frac{97}{98}\cdot x\cdot...\cdot x\cdot\frac{999}{1000}\)
\(\frac{96}{97}\cdot\frac{97}{98}\cdot...\cdot\frac{999}{1000}\cdot x^{903}\)
\(\frac{96}{1000}\cdot x^{903}\)
\(\frac{12}{125}\cdot x^{903}\)
(1 - 1/97) x (1 - 1/98) x ... x (1 - 1/1000)
= 96/97 x 97/98 x ... x 999/1000
= 12/125
\(A=\left(1-\frac{1}{97}\right)x\left(1-\frac{1}{98}\right)x....x\left(1-\frac{1}{1000}\right)\)
\(A=\frac{96}{97}x\frac{97}{98}x..x\frac{999}{1000}\)
\(A=\frac{96x97x98x...x999}{97x98x99x...x1000}=\frac{96}{1000}=\frac{12}{125}\)
\(\left(1-\frac{3}{4}\right).\left(1-\frac{3}{7}\right).\left(1-\frac{3}{10}\right).\left(1-\frac{3}{13}\right)...\left(1-\frac{3}{97}\right).\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}.\frac{4}{7}.\frac{7}{10}.\frac{10}{13}...\frac{94}{97}.\frac{97}{100}\)
\(=\frac{1.4.7.10...94.97}{4.7.10.13...97.100}=\frac{1}{100}.\)
Ta có: \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{97}+\frac{1}{98}\right)=\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\)
\(=\frac{99}{1.98}+\frac{99}{2.97}+...+\frac{99}{49.50}=99.\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right)\)
\(=9.11\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right)\)
Vậy: đpcm