\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\\a+b+c=abc\end{cases}\Ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1,

\(A=1+a+\frac{1}{b}+\frac{a}{b}+1+b+\frac{1}{a}+\frac{b}{a}\)

\(\ge1+1+2\sqrt{\frac{a}{b}.\frac{b}{a}}+a+b+\frac{a+b}{ab}=4+a+b+\frac{4\left(a+b\right)}{\left(a+b\right)^2}=4+a+b+\frac{4}{a+b}\)

lại có \(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a+b\le\sqrt{2}\)

\(4+a+b+\frac{4}{a+b}=4+\left(a+b+\frac{2}{a+b}\right)+\frac{2}{a+b}\ge4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

\(\Rightarrow A\ge4+3\sqrt{2}\)

câu 2

ta có:\(\left(2b^2+a^2\right)\left(2+1\right)\ge\left(2b+a\right)^2\Rightarrow3c\ge a+2b\)

\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(Q.E.D\right)\)

16 tháng 3 2020

https://olm.vn/hoi-dap/detail/91063613112.html

bạn tìm ở link này nhé . câu này đã đc cộng tác ziên giải r nên cậu cứ yên tâm nhá

hì hì

18 tháng 10 2020

a) \(\Leftrightarrow\hept{\begin{cases}\frac{x+1+1}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}\Leftrightarrow\hept{\begin{cases}1+\frac{1}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}}\)

Đặt \(a=\frac{1}{x+1};b=\frac{1}{y-2}\)

\(\Leftrightarrow\hept{\begin{cases}1+a+2b=6\\5a-b=3\end{cases}\Leftrightarrow\hept{\begin{cases}a+2b=5\\5a-b=3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+1}=1\\\frac{1}{y-2}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=\frac{5}{2}\end{cases}}}\)

b) ĐK: \(\hept{\begin{cases}x\ne0\\y\ne1\end{cases}}\)

\(PT\left(1\right)\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\)(loại)

, x=2 , x2-2x+4=0 (3)

pt(3) vô nghiệm vì \(\Delta'=1-4=-3< 0\)

Thay x=2 vào pt(2) ta được \(\frac{1}{2}+\frac{1}{y-2}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow y=2\left(tm\text{đ}k\right)\)

Vậy nghiệm của hpt là: (x;y)=(2;2)

4 tháng 7 2018

  Đặt x = 1/a ; y = 1/b, z = 1/c với x,y,z > 0 
đk <=> 1/x + 1/y + 1/z = 1/(xyz) 
<=> xy + yz + zx = 1 
A = √[yz/(1+x²)] + √[zx/(1+y²)] + √[xy/(1+z²)] 
Ta có: 
1 + x² = x² + xy + yz + zx = (x+z)(x+y) 
=> √[yz/(1+x²)] = √[y/(x+y)] . √[z/(x+z)] 
≤ 1/2 . [y/(x+y) + z/(x+z)] (1) 
(áp dụng bđt Cosi: √m .√n ≤ 1/2 . (m+n)) 
Tương tự: 
√[xz/(1+y²)] = √[x/(x+y)] . √[z/(y+z)] ≤ 1/2 . [x/(x+y) + z/(y+z)] (2) 
√[xy/(1+z²)] = √[y/(z+y)] . √[x/(x+z)] ≤ 1/2 . [y/(z+y) + x/(x+z)] (3) 
Cộng vế của (1),(2) và (3) lại ta được: 
A ≤ 1/2 . 3 = 3/2 
Vậy Max A = 3/2 xảy ra <=> x = y = z = 1/√3 <=> a = b = c = √3

7 tháng 7 2018

bạn trả lời lại bằng phần mềm của OLM đươc ko? Thế này hơi khó hiểu bạn ạ! Thanks

20 tháng 6 2018

\(A=\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)

\(>=\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+ac+bc}\)(bđt svacxo)\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+ac+bc}+\frac{1}{ab+ac+bc}+\frac{7}{ab+ac+bc}\)

\(>=\frac{9}{a^2+b^2+c^2+ab+ac+bc+ac+ac+bc}+\frac{7}{ab+ac+bc}\)(bđt svacxo)

\(=\frac{9}{a^2+b^2+c^2+2ab+2ac+2bc}+\frac{7}{ab+ac+bc}=\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+ac+bc}\)

\(=\frac{9}{1}+\frac{7}{ab+ac+bc}=9+\frac{7}{ab+ac+bc}\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc>=ab+ac+bc+2ab+2ac+2bc\)

\(=3ab+3ac+3bc=3\left(ab+ac+bc\right)\Rightarrow\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\cdot1=\frac{1}{3}>=ab+ac+bc\Rightarrow ab+ac+bc< =\frac{1}{3}\)

\(\Rightarrow9+\frac{7}{ab+ac+bc}>=9+\frac{7}{\frac{1}{3}}=9+7\cdot3=9+21=30\)

\(\Rightarrow A>=30\)dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

vậy min A là 30 khi \(a=b=c=\frac{1}{3}\)

22 tháng 5 2021

có vấn đề

22 tháng 5 2021

anhtoan

bài này có người giải rồi