Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)
Dấu "=" xảy ra khi a=2
2)
\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)
Có: \(\frac{a^4}{b^2c}+\frac{b^4}{c^2a}+b\ge\frac{3ab}{c}\)
Tương tự, ta cũng được: \(\Sigma_{cyc}\frac{a^4}{b^2c}\ge\frac{3}{2}\Sigma_{cyc}\frac{ab}{c}-\frac{1}{2}\Sigma_{cyc}a\)
Cần CM: \(\Sigma_{cyc}\frac{ab}{c}\ge\Sigma_{cyc}a\)
Có: \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
Tương tự, ta có đpcm
Dấu "=" xảy ra khi a=b=c
1/ a/dung bđt Cauchy - Schwarz dạng phân thức: \(\frac{a^2}{b+3c}+\frac{b^2}{c+3a}+\frac{c^2}{a+3b}\ge\frac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\frac{a+b+c}{4}=\frac{3}{4}\)
2/ a/dung bđt bunhiacopxki :
\(S^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=3\cdot2\left(a+b+c\right)=6\cdot6=36\)
=> \(S\le6\)
\(P=\frac{a^2}{2ab+3ac}+\frac{b^2}{2bc+3ab}+\frac{c^2}{2ac+3bc}\)
\(P\ge\frac{\left(a+b+c\right)^2}{5\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}=\frac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho \(a=b=c\) ta có:
\(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\ge1+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\Leftrightarrow1\ge2\)
Bất đẳng thức sai