\(\frac{3}{\left(1x2\right)}+\frac{5}{\left(2x3\right)}+...+\frac{2n+1}{\left(n\lef...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

\(\frac{150}{5.8}+\frac{150}{8.11}+\frac{150}{11.14}+.....+\frac{150}{47.50}\)

\(=50.\left(\frac{3}{5.8}+\frac{5}{8.11}+.....+\frac{3}{47.50}\right)\)

\(=50.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{47}-\frac{1}{50}\right)\)

\(=50.\left(\frac{1}{5}-\frac{1}{50}\right)\)

\(=50.\frac{9}{50}=9\)

27 tháng 3 2017

Ta có:

\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{2n+1}{n^2}-\frac{2n+1}{\left(n+1\right)^2}\)

\(=1-\frac{2n+1}{\left(n+1\right)^2}\)

Vậy \(A=\frac{2n+1}{\left(n+1\right)^2}\)

28 tháng 3 2017

SAI RỒI ĐÁP ÁN LÀ N^2/(N+1)^2

26 tháng 10 2019

Ta có: 

\(1^4+\frac{1}{4}=\left(1^2-1+\frac{1}{2}\right)\left(1^2+1+\frac{1}{2}\right)=\frac{1}{2}.\left(2+\frac{1}{2}\right)\)

\(2^4+\frac{1}{4}=\left(2^2-2+\frac{1}{2}\right)\left(2^2+2+\frac{1}{2}\right)=\left(2+\frac{1}{2}\right).\left(6+\frac{1}{2}\right)\)

\(3^4+\frac{1}{4}=\left(3^2-3+\frac{1}{2}\right)\left(3^2+3+\frac{1}{2}\right)=\left(6+\frac{1}{2}\right).\left(12+\frac{1}{2}\right)\)

\(4^4+\frac{1}{4}=\left(4^2-4+\frac{1}{2}\right)\left(4^2+4+\frac{1}{2}\right)=\left(12+\frac{1}{2}\right).\left(20+\frac{1}{2}\right)\)

...

\(19^4+\frac{1}{4}=\left(19^2-19+\frac{1}{2}\right)\left(19^2+19+\frac{1}{2}\right)=\left(342+\frac{1}{2}\right).\left(380+\frac{1}{2}\right)\)

\(20^4+\frac{1}{4}=\left(20^2-20+\frac{1}{2}\right)\left(20^2+20+\frac{1}{2}\right)=\left(380+\frac{1}{2}\right).\left(420+\frac{1}{2}\right)\)

=> \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}\)

\(=\frac{\frac{1}{2}\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(342+\frac{1}{2}\right).\left(380+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)\left(20+\frac{1}{2}\right)...\left(380+\frac{1}{2}\right).\left(420+\frac{1}{2}\right)}\)

\(=\frac{\frac{1}{2}}{420+\frac{1}{2}}=\frac{1}{841}\)

13 tháng 6 2016

Tất cả các đẳng thức trên đều được chứng minh theo phương pháp quy nạp

Đặt n = k thì có đẳng thức

Chứng minh rằng n = k+1 cũng đúng ( vế trái (k+1) = vế phải (k+1) )

13 tháng 6 2016

thi giai ra luon dj