Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là UCLN của 12n +1/ 30n+2
=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d
=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d
=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d
=>(60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> giả sử đầu bài đúng
=> phân số 12n+1/30n+2 là phân số tối giản (n thuộc N)
Gọi d là ƯC(12n + 1 ; 30n + 2)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
=> 60n + 5 - 60n + 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(12n + 1; 30n + 2) = 1
=> \(\frac{12n+1}{30n+2}\)tối giản ( đpcm )_
Ta có \(\frac{12n+1}{30n+2}\), gọi ƯCLN của 12n + 1 và 30n + 2 là d
Suy ra
( 12n + 1 ) . 5 = 60n + 5 chia hết cho d
( 30n + 2 ) . 2 = 60n + 4 chia hết cho d
Suy ra [ ( 60n + 5 ) - ( 60n + 4 ) ] chia hết cho d
Suy ra 1 chia hết cho d
Nên d = 1
Suy ra ( 12n + 1 ) và ( 30n + 2 ) Nguyên tố cùng nhau
Suy ra\(\frac{12n+1}{30n+2}\)là phân số tối giản
+Gọi d là ƯCLN(12n+1;30n+2)
+Ta có: (12n+1)<>d
(30n+2)<>d
> 5(12n+1)<>d
2(30n+2)<>D
> 60n+5<>d
60n+4<>d
> [(60n+5)-(60n+4)] <>d
> 1 <>d
> d thuộc {1}
Vậy 12n+1 trên 30+2 là phân số tối giản
À mình quên <> là chia hết cho(kí hiệu mình tự chế)
> là suy ra
diện tích toàn phần của hình lập phương đó là:
0,56 * 6 = 3,36 (\(m^2\))
đáp số:3,36 \(m^2\)
Gọi (12n + 1,30n + 2) = d (d \(\in\)N)
\(\Rightarrow\hept{\begin{cases}12n+1\\30n+2\end{cases}}\)chia hết cho d \(\Rightarrow\hept{\begin{cases}5\left(12+1\right)\\2\left(30n+2\right)\end{cases}}\)chia hết cho d
\(\Rightarrow\hept{\begin{cases}60n+5\\60n+4\end{cases}}\) chia hết cho d
=> 60n + 5 - (60n + 4) chia hết cho d
hay 1 chia hết cho d nên d \(\in\) Ư(1)
Mà Ư(1) = {-1;1} => d \(\in\) {-1;1}
Vì d là số tự nhiên nên d = 1
=> (12n + 1,30n + 2) = 1 hay 12n + 1 và 30n + 2 là 2 số nguyên tố cùng nhau
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản (ĐPCM)
Ủng hộ mk nha !!! ^_^
Để 12n+1/30n+2 là phân số tối giản thì 12n+1 và 30n+2 phải có ƯCLN bằng 1
Gọi d là ƯCLN của 12n+1 và 30n+2
12n+1 chia hết cho d
30n+2 chia hết cho d
suy ra (30n+2 )-(12n+1) chia hết cho d
= 30n+2-12n-1 chia hết cho d
=(30n-12n) + (2-1)chia hết cho d
=8n+1
8n chia hết cho d , 1 chia hết cho d
suy ra n= 8n thì 12n+1/30n+2laf p/s tối giản
Gọi d là ƯCLN(12n + 1; 30n + 2)
Khi đó : 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
<=> 60n + 5 chia hết cho d và 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d => 1 chia hết cho d => d = 1
Vì ƯCLN(12n + 1; 30n + 2) = 1 => 12n + 1/60n + 2 là p/s tối giản
Gọi d là ƯCLN của 12n + 1 và 30n + 2
12n + 1 chia hết cho d ; 30n + 2 chia hết cho d
=> 5 ( 12n + 1 ) chia hết cho d ; 2 ( 30n + 2 ) chia hết cho d
=> 60n + 5 chia hết cho d ; 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> Đpcm
Đặt \(\left(12n+1;30n+2\right)=d\)\(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)\(\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi (12n + 1; 30n + 2) = d
=> 12n + 1 chia hết cho d
30n + 2 chia hết cho d
Xét hiệu: 5(12n + 1) - 2(30n + 2) chia hết cho d
<=> 60n + 5 - 60n - 4 chia hết cho d
<=> 1 chia hết cho d
=> d = 1
Vậy (12n + 1)/(30n + 2) là phân số tối giản
Gọi ước chung lớn nhất của 12n + 1 và 30n + 2 là d, ta sẽ chứng minh d = 1.
Ta có : (12n + 1)⋮ d nên 2.(30n + 2)⋮ d hay (60n + 4)⋮ d.
=> [(60n + 5) - (60n + 4)⋮ d.
=> (60n + 5 - 60n - 4)⋮ d.
=> 1⋮ d => d = 1.
Hay 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau.
Vậy : phân số \(\frac{12n+1}{30n+2}\)là phân số tối giản.
Gọi d là : ƯCLN của : 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d
<=> 5(12n + 1) chia hết cho d , 2(30n + 2) chia hết cho d
<=> 60n + 5 chia hết cho d , 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ƯCLN của 12n + 1 và 30n + 2 = 1
Do đó phân số \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)
Gọi d là : ƯCLN của : 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d, 30n + 2 chia hết cho d
<=> 5(12n + 1) chia hết cho d, 2(30n + 2) chia hết cho d
<=> 60n + 5 chia hết cho d, 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ƯCLN của 12n +1 và 30n +2 = 1
Do đó phân số : \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\) .
Chúc bạn học tốt !
gọi d thuộc ƯC(12n+1,30n+2)
=>\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\Rightarrow1⋮d}\)\(⋮d\)=>d=-1;1
=>\(\frac{12n+1}{30n+2}\)là p/số tối giản
Gọi d là ƯCLN của 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d
<=> 5.(12n + 1) chia hết cho d , 2(30n + 2) chia hết cho d
=> 60n + 5 chia hết cho d , 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản